Artificial intelligence for precision education in radiology

被引:127
作者
Duong, Michael Tran [1 ,2 ]
Rauschecker, Andreas M. [2 ,3 ]
Rudie, Jeffrey D. [2 ,3 ]
Chen, Po-Hao [4 ]
Cook, Tessa S. [2 ]
Bryan, R. Nick [2 ,5 ]
Mohan, Suyash [2 ,6 ]
机构
[1] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[4] Cleveland Clin, Imaging Inst, Cleveland, OH 44106 USA
[5] Univ Texas Austin, Dell Med Sch, Dept Diagnost Med, Austin, TX 78712 USA
[6] Univ Penn, Dept Neurosurg, Philadelphia, PA 19104 USA
关键词
SEGMENTATION; IDENTIFICATION; INFORMATION; PERFORMANCE; FEATURES; DATABASE; LESIONS; SYSTEM; FUTURE; TOOL;
D O I
10.1259/bjr.20190389
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In the era of personalized medicine, the emphasis of health care is shifting from populations to individuals. Artificial intelligence (Al) is capable of learning without explicit instruction and has emerging applications in medicine, particularly radiology. Whereas much attention has focused on teaching radiology trainees about Al, here our goal is to instead focus on how Al might be developed to better teach radiology trainees. While the idea of using Al to improve education is not new, the application of Al to medical and radiological education remains very limited. Based on the current educational foundation, we highlight an Al-integrated framework to augment radiology education and provide use case examples informed by our own institution's practice. The coming age of "Al-augmented radiology" may enable not only "precision medicine" but also what we describe as "precision medical education," where instruction is tailored to individual trainees based oi their learning styles and needs.
引用
收藏
页数:11
相关论文
共 70 条
[11]   The Role of Artificial Intelligence in Diagnostic Radiology: A Survey at a Single Radiology Residency Training Program [J].
Collado-Mesa, Fernando ;
Alvarez, Edilberto ;
Arheart, Kris .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2018, 15 (12) :1753-1757
[12]   A New Initiative on Precision Medicine [J].
Collins, Francis S. ;
Varmus, Harold .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (09) :793-795
[13]   Why Isn't There More High-fidelity Simulation Training in Diagnostic Radiology? Results of a Survey of Academic Radiologists [J].
Cook, Tessa S. ;
Hernandez, Jessica ;
Scanlon, Mary ;
Langlotz, Curtis ;
Li, Chun-Der L. .
ACADEMIC RADIOLOGY, 2016, 23 (07) :870-876
[14]   Radiology Teaching Files: an Assessment of Their Role and Desired Features Based on a National Survey [J].
Dashevsky, Brittany ;
Gorovoy, Mia ;
Weadock, William J. ;
Juluru, Krishna .
JOURNAL OF DIGITAL IMAGING, 2015, 28 (04) :389-398
[15]   Informatics in Radiology RADTF: A Semantic Search-enabled, Natural Language Processor-generated Radiology Teaching File [J].
Do, Bao H. ;
Wu, Andrew ;
Biswal, Sandip ;
Kamaya, Aya ;
Rubin, Daniel L. .
RADIOGRAPHICS, 2010, 30 (07) :2039-2048
[16]  
Duda JT, 2018, P SPIE MED IMAGING, P26
[17]   Convolutional Neural Network for Automated FLAIR Lesion Segmentation on Clinical Brain MR Imaging [J].
Duong, M. T. ;
Rudie, J. D. ;
Wang, J. ;
Xie, L. ;
Mohan, S. ;
Gee, J. C. ;
Rauschecker, A. M. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (08) :1282-1290
[18]   Deep Learning in Radiology: Does One Size Fit All? [J].
Erickson, Bradley J. ;
Korfiatis, Panagiotis ;
Kline, Timothy L. ;
Akkus, Zeynettin ;
Philbrick, Kenneth ;
Weston, Alexander D. .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2018, 15 (03) :521-526
[19]   Machine Learning for Medical Imaging1 [J].
Erickson, Bradley J. ;
Korfiatis, Panagiotis ;
Akkus, Zeynettin ;
Kline, Timothy L. .
RADIOGRAPHICS, 2017, 37 (02) :505-515
[20]   Influence of computer-aided detection on performance of screening mammography [J].
Fenton, Joshua J. ;
Taplin, Stephen H. ;
Carney, Patricia A. ;
Abraham, Linn ;
Sickles, Edward A. ;
D'Orsi, Carl ;
Berns, Eric A. ;
Cutter, Gary ;
Hendrick, R. Edward ;
Barlow, William E. ;
Elmore, Joann G. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 356 (14) :1399-1409