Artificial intelligence for precision education in radiology

被引:127
作者
Duong, Michael Tran [1 ,2 ]
Rauschecker, Andreas M. [2 ,3 ]
Rudie, Jeffrey D. [2 ,3 ]
Chen, Po-Hao [4 ]
Cook, Tessa S. [2 ]
Bryan, R. Nick [2 ,5 ]
Mohan, Suyash [2 ,6 ]
机构
[1] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[4] Cleveland Clin, Imaging Inst, Cleveland, OH 44106 USA
[5] Univ Texas Austin, Dell Med Sch, Dept Diagnost Med, Austin, TX 78712 USA
[6] Univ Penn, Dept Neurosurg, Philadelphia, PA 19104 USA
关键词
SEGMENTATION; IDENTIFICATION; INFORMATION; PERFORMANCE; FEATURES; DATABASE; LESIONS; SYSTEM; FUTURE; TOOL;
D O I
10.1259/bjr.20190389
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In the era of personalized medicine, the emphasis of health care is shifting from populations to individuals. Artificial intelligence (Al) is capable of learning without explicit instruction and has emerging applications in medicine, particularly radiology. Whereas much attention has focused on teaching radiology trainees about Al, here our goal is to instead focus on how Al might be developed to better teach radiology trainees. While the idea of using Al to improve education is not new, the application of Al to medical and radiological education remains very limited. Based on the current educational foundation, we highlight an Al-integrated framework to augment radiology education and provide use case examples informed by our own institution's practice. The coming age of "Al-augmented radiology" may enable not only "precision medicine" but also what we describe as "precision medical education," where instruction is tailored to individual trainees based oi their learning styles and needs.
引用
收藏
页数:11
相关论文
共 70 条
[1]   Resident Case Volume Correlates with Clinical Performance: Finding the Sweet Spot [J].
Agarwal, Vikas ;
Bump, Gregory M. ;
Heller, Matthew T. ;
Chen, Ling-Wan ;
Branstetter, Barton F. ;
Amesur, Nikhil B. ;
Hughes, Marion A. .
ACADEMIC RADIOLOGY, 2019, 26 (01) :136-140
[2]   It is About "Time": Academic Neuroradiologist Time Distribution for Interpreting Brain MRIs [J].
Al Yassin, Altaib ;
Sadaghiani, Mohammad Salehi ;
Mohan, Suyash ;
Bryan, R. Nick ;
Nasrallah, Ilya .
ACADEMIC RADIOLOGY, 2018, 25 (12) :1521-1525
[3]   INTELLIGENT TUTORING SYSTEMS [J].
ANDERSON, JR ;
BOYLE, CF ;
REISER, BJ .
SCIENCE, 1985, 228 (4698) :456-462
[4]   "Flipping" the Introductory Clerkship in Radiology: Impact on Medical Student Performance and Perceptions [J].
Belfi, Lily M. ;
Bartolotta, Roger J. ;
Giambrone, Ashley E. ;
Davi, Caryn ;
Min, Robert J. .
ACADEMIC RADIOLOGY, 2015, 22 (06) :794-801
[5]   Learning style Identifier: Improving the precision of learning style identification through computational intelligence algorithms [J].
Bernard, Jason ;
Chang, Ting-Wen ;
Popescu, Elvira ;
Graf, Sabine .
EXPERT SYSTEMS WITH APPLICATIONS, 2017, 75 :94-108
[6]   Multiple Sclerosis: Identification of Temporal Changes in Brain Lesions with Computer-Assisted Detection Software [J].
Bilello, M. ;
Arkuszewski, M. ;
Nucifora, P. ;
Nasrallah, I. ;
Melhem, E. R. ;
Cirillo, L. ;
Krejza, J. .
NEURORADIOLOGY JOURNAL, 2013, 26 (02) :143-150
[7]  
Chan Kai Siang, 2019, JMIR Med Educ, V5, pe13930, DOI 10.2196/13930
[8]  
Chen PH, 2016, P SPIE MED IMAGING
[9]   Toward Data-Driven Radiology Education-Early Experience Building Multi-Institutional Academic Trainee Interpretation Log Database (MATILDA) [J].
Chen, Po-Hao ;
Loehfelm, Thomas W. ;
Kamer, Aaron P. ;
Lemmon, Andrew B. ;
Cook, Tessa S. ;
Kohli, Marc D. .
JOURNAL OF DIGITAL IMAGING, 2016, 29 (06) :638-644
[10]   Current Applications and Future Impact of Machine Learning in Radiology [J].
Choy, Garry ;
Khalilzadeh, Omid ;
Michalski, Mark ;
Do, Synho ;
Samir, Anthony E. ;
Pianykh, Oleg S. ;
Geis, J. Raymond ;
Pandharipande, Pari V. ;
Brink, James A. ;
Dreyer, Keith J. .
RADIOLOGY, 2018, 288 (02) :318-328