Contactless density measurement of high-temperature BiFeO3 and BaTiO3

被引:20
|
作者
Paradis, PF [1 ]
Yu, J [1 ]
Ishikawa, T [1 ]
Aoyama, T [1 ]
Yoda, S [1 ]
机构
[1] Natl Space Dev Agcy Japan, Tsukuba, Ibaraki 3058505, Japan
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2004年 / 79卷 / 08期
关键词
D O I
10.1007/s00339-003-2133-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The density of liquid and undercooled BiFeO3 and high-temperature solid, liquid, and undercooled BaTiO3 was measured with an electrostatic levitation furnace. The density was obtained with an ultraviolet-based imaging technique that allowed excellent sample contrast throughout all phases of processing, including at elevated temperatures. Over the 1250- to 1490-K temperature range, the density of liquid BiFeO3 can be expressed as rho(L)(T)=6.70x10(3)-1.31 (T-T-m) (kg m(-3)) (+/-2 per cent) with T-m=1423 K, yielding a volume coefficient of thermal expansion alpha(L)(T)=1.9x10(-4) K-1. For BaTiO3, the density of the solid can be expressed as rho(S)(T)=5.04x10(3)-0.21 (T-T-m) (T=1893 K) over the 1220- to 1893-K range, yielding a volume coefficient of thermal expansion alpha(S) (T)=4.2x10(-5) K-1, whereas that of the liquid can be expressed as rho(L)(T)=4.04x10(3)-0.34 (T-T-m) over the 1300- to 2025-K range with alpha(L)(T)=8.4x10(-5) K-1.
引用
收藏
页码:1965 / 1969
页数:5
相关论文
共 50 条
  • [1] Contactless density measurement of high-temperature BiFeO3 and BaTiO3
    P.-F. Paradis
    J. Yu
    T. Ishikawa
    T. Aoyama
    S. Yoda
    Applied Physics A, 2004, 79 : 1965 - 1969
  • [2] Local Structure Analysis of BaTiO3 and BiFeO3 in the High-temperature Cubic Phase
    Yoneda, Yasuhiro
    Kohara, Shinji
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 55 (02) : 741 - 745
  • [3] Optimization of calcination temperature of lead-free BiFeO3–BaTiO3 high-temperature piezoceramics
    Park, Kyu-Hyun
    Lee, Gyoung-Ja
    Bu, Sang-Don
    Lee, Min-Ku
    Current Applied Physics, 2022, 44 : 76 - 84
  • [4] Conductive property of BiFeO3–BaTiO3 ferroelectric ceramics with high Curie temperature
    Zeng F.
    Fan G.
    Hao M.
    Wang Y.
    Wen Y.
    Chen X.
    Zhang J.
    Lu W.
    Journal of Alloys and Compounds, 2020, 831
  • [5] Structural, ferroelectric and piezoelectric properties of Mn-modified BiFeO3–BaTiO3 high-temperature ceramics
    Zhenyong Cen
    Changrong Zhou
    Huabin Yang
    Qin Zhou
    Weizhou Li
    Changlai Yuan
    Journal of Materials Science: Materials in Electronics, 2013, 24 : 3952 - 3957
  • [6] Effects of Bi excess on the structure and electrical properties of high-temperature BiFeO3–BaTiO3 piezoelectric ceramics
    Changrong Zhou
    Huabin Yang
    Qin Zhou
    Guohua Chen
    Weizhou Li
    Hua Wang
    Journal of Materials Science: Materials in Electronics, 2013, 24 : 1685 - 1689
  • [7] Magnetoelectric coupling and phase transition in BiFeO3 and (BiFeO3)0.95(BaTiO3)0.05 ceramics
    Wang, T. -H.
    Tu, C. -S.
    Chen, H. -Y.
    Ding, Y.
    Lin, T. C.
    Yao, Y. -D.
    Schmidt, V. H.
    Wu, K. -T.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (04)
  • [8] Negative Capacitance in BaTiO3/BiFeO3 Bilayer Capacitors
    Hou, Ya-Fei
    Li, Wei-Li
    Zhang, Tian-Dong
    Yu, Yang
    Han, Ren-Lu
    Fei, Wei-Dong
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (34) : 22354 - 22360
  • [9] Temperature stability of sodium-doped BiFeO3–BaTiO3 piezoelectric ceramics
    Qiaolan Fan
    Changrong Zhou
    Qinglin Li
    Jiwen Xu
    Changlai Yuan
    Guohua Chen
    Journal of Materials Science: Materials in Electronics, 2015, 26 : 9336 - 9341
  • [10] Fabrication and Ferroelectric Properties of BiFeO3/BaTiO3 Heterostructures
    Aleszkiewicz, M.
    Dybko, K.
    Dynowska, E.
    Dluzewski, P.
    Przyslupski, P.
    ACTA PHYSICA POLONICA A, 2016, 130 (02) : 511 - 515