Mass Transport via In-Plane Nanopores in Graphene Oxide Membranes

被引:27
作者
Foller, Tobias [1 ]
Madauss, Lukas [2 ,3 ]
Ji, Dali [1 ]
Ren, Xiaojun [1 ]
De Silva, K. Kanishka H. [4 ]
Musso, Tiziana [1 ]
Yoshimura, Masamichi [4 ]
Lebius, Henning [5 ]
Benyagoub, Abdenacer [5 ]
V. Kumar, Priyank [6 ]
Schleberger, Marika [2 ,3 ]
Joshi, Rakesh [1 ]
机构
[1] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[2] Univ Duisburg Essen, Fac Phys, D-47057 Duisburg, Germany
[3] Univ Duisburg Essen, CENIDE, D-47057 Duisburg, Germany
[4] Toyota Technol Inst, Surface Sci Lab, Nagoya, Aichi 4688511, Japan
[5] Normandie Univ, CNRS, CEA, UNICAEN,ENSICAEN,CIMAP, F-14032 Caen, France
[6] Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会; 欧盟地平线“2020”;
关键词
mass transport; angstrom con fi nement; hydrogen network; water transport; ethanol transport; nano porous materials; WATER DESALINATION; FABRICATION; PERMEATION; EXCLUSION; IONS; SIZE;
D O I
10.1021/acs.nanolett.2c01615
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Angstrom-confined solvents in 2D laminates can travel through interlayer spacings, through gaps between adjacent sheets, and via in-plane pores. Among these, experimental access to investigate the mass transport through in-plane pores is lacking. Our experiments allow an understanding of this mass transport via the controlled variation of oxygen functionalities, size and density of in-plane pores in graphene oxide membranes. Contrary to expectations, our transport experiments show that higher in-plane pore densities may not necessarily lead to higher water permeability. We observed that membranes with a high in-plane pore density but a low amount of oxygen functionalities exhibit a complete blockage of water. However, when water- ethanol mixtures with a weaker hydrogen network are used, these membranes show an enhanced permeation. Our combined experimental and computational results suggest that the transport mechanism is governed by the attraction of the solvents toward the pores with functional groups and hindered by the strong hydrogen network of water formed under angstrom confinement.
引用
收藏
页码:4941 / 4948
页数:8
相关论文
共 48 条
[1]  
Abraham J, 2017, NAT NANOTECHNOL, V12, P546, DOI [10.1038/nnano.2017.21, 10.1038/NNANO.2017.21]
[2]   Creation of multiple nanodots by single ions [J].
Akcoeltekin, Ender ;
Peters, Thorsten ;
Meyer, Ralf ;
Duvenbeck, Andreas ;
Klusmann, Miriam ;
Monnet, Isabelle ;
Lebius, Henning ;
Schleberger, Marika .
NATURE NANOTECHNOLOGY, 2007, 2 (05) :290-294
[3]   Insights on the mechanism of water-alcohol separation in multilayer graphene oxide membranes: Entropic versus enthalpic factors [J].
Borges, Daiane Damasceno ;
Woellner, Cristiano F. ;
Autreto, Pedro A. S. ;
Galvao, Douglas S. .
CARBON, 2018, 127 :280-286
[4]   Evaluating graphene oxide and holey graphene oxide membrane performance for water purification [J].
Buelke, Chris ;
Alshami, Ali ;
Casler, James ;
Lin, Yi ;
Hickner, Mike ;
Aljundi, Isam H. .
JOURNAL OF MEMBRANE SCIENCE, 2019, 588
[5]   Reduced Holey Graphene Oxide Membranes for Desalination with Improved Water Permeance [J].
Chen, Xiaoyi ;
Feng, Zhihao ;
Gohil, Janavi ;
Stafford, Christopher M. ;
Dai, Ning ;
Huang, Liang ;
Lin, Haiqing .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (01) :1387-1394
[6]   Molecular size-dependent subcontinuum solvent permeation and ultrafast nanofiltration across nanoporous graphene membranes [J].
Cheng, Chi ;
Iyengar, Sathvik Ajay ;
Karnik, Rohit .
NATURE NANOTECHNOLOGY, 2021, 16 (09) :989-+
[7]   Water Desalination across Nanoporous Graphene [J].
Cohen-Tanugi, David ;
Grossman, Jeffrey C. .
NANO LETTERS, 2012, 12 (07) :3602-3608
[8]  
Deng DH, 2016, NAT NANOTECHNOL, V11, P218, DOI [10.1038/NNANO.2015.340, 10.1038/nnano.2015.340]
[9]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[10]   Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide [J].
Erickson, Kris ;
Erni, Rolf ;
Lee, Zonghoon ;
Alem, Nasim ;
Gannett, Will ;
Zettl, Alex .
ADVANCED MATERIALS, 2010, 22 (40) :4467-4472