Monodromy of real isolated singularities

被引:9
作者
A'Campo, N [1 ]
机构
[1] Univ Basel, CH-4051 Basel, Switzerland
关键词
fibered knot; monodromy; involution; strong inversion; singularity; real morsification; divide; plane curve; Seifert matrix;
D O I
10.1016/S0040-9383(02)00099-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Complex conjugation on complex space permutes the level sets of a real polynomial function and induces involutions on level sets corresponding to real values. For isolated complex hypersurface singularities with real defining equation we show the existence of a monodromy vector field such that complex conjugation intertwines the local monodromy diffeomorphism with its inverse. In particular, it follows that the geometric monodromy is the composition of the involution induced by complex conjugation and another involution. This topological property holds for all isolated complex plane curve singularities. Using real morsifications, we compute the action of complex conjugation and of the other involution on the Milnor fiber of real plane curve singularities. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1229 / 1240
页数:12
相关论文
共 20 条
[11]  
GUSEINZADE SM, 1984, ANAL PRILOZEN, V18, P6
[12]   DEFORMING HOMOTOPY INVOLUTIONS OF 3-MANIFOLDS TO INVOLUTIONS [J].
HEIL, W ;
TOLLEFSON, JL .
TOPOLOGY, 1978, 17 (04) :349-365
[13]  
Hilbert D., 1932, Geometry and the Imagination
[14]  
ISHIKAWA U, 2001, THESIS U BASEL
[15]  
Kawauchi A., 1996, SURVEY KNOT THEORY
[16]  
MILNOR J, 1968, ANN MATH STUD
[17]  
SCHULZE M, THESIS KAISERSLAUTER
[18]  
SCHULZE M, 2001, E COMMUNICATION NOV
[19]  
TEISSIER B, 1990, CR ACAD SCI I-MATH, V311, P111
[20]   CORRECTION [J].
TOLLEFSON, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 243 (SEP) :309-310