q-differential operator identities and applications

被引:32
作者
Fang, Jian-Ping [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[2] Huaiyin Teachers Coll, Dept Math, Huaian 223300, Peoples R China
关键词
q-series; basic hypergeometric series; q-differential operator; q-ultraspherical polynomials; big q-Laguerre polynomials;
D O I
10.1016/j.jmaa.2006.10.087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct a new q-exponential operator and obtain some operator identities. Using these operator identities, we give a formal extension of Jackson's (2)Phi(2) transformation formula. A formal extension of Bailey's (3)psi(3) summation and an extension of the Sears terminating balanced (4)Phi(3) transformation formula are also derived by our operator method. In addition, we also derive several interesting a formal extensions involving multiple sum about three terms of Sears (3)Phi(2) transformation formula and Heine's (2)Phi(1) transformation formula. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1393 / 1407
页数:15
相关论文
共 12 条
[1]  
ALSALAM WA, 1990, NATO ADV SCI I C-MAT, V294, P1
[2]  
ANDREWS GE, 1971, STUD APPL MATH, V50, P345
[3]  
Andrews GE., 1999, LANCET ONCOL, V22, P19, DOI [10.1080/16073606.1999.9632056, DOI 10.1080/16073606.1999.9632056]
[4]  
[Anonymous], CONT MATH
[5]   Parameter augmentation for basic hypergeometric series .2. [J].
Chen, WYC ;
Liu, ZG .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 80 (02) :175-195
[6]  
CHEN WYC, 1998, J COMBIN THEORY SER, P111
[7]  
GASPER G, 1995, FIELDS I COMMUN, P1
[8]  
Gasper G., 1990, Basic Hypergeometric Series
[9]   Some operator identities and q-series transformation formulas [J].
Liu, ZG .
DISCRETE MATHEMATICS, 2003, 265 (1-3) :119-139
[10]   An expansion formula for q-series and applications [J].
Liu, ZG .
RAMANUJAN JOURNAL, 2002, 6 (04) :429-447