Simulated CO2-induced ocean acidification for ocean in the East China: historical conditions since preindustrial time and future scenarios

被引:18
作者
Zhang, Han [1 ,2 ]
Wang, Kuo [1 ]
机构
[1] Zhejiang Climate Ctr, Hangzhou 310017, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Earth Sci, Dept Atmospher Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
国家重点研发计划;
关键词
CALCIUM-CARBONATE SATURATION; DISSOLUTION KINETICS; THERMOHALINE CIRCULATION; CACO3; DISSOLUTION; ATMOSPHERIC CO2; CLIMATE-CHANGE; MODEL; CALCIFICATION; SYSTEM; SEAWATER;
D O I
10.1038/s41598-019-54861-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since preindustrial times, as atmospheric CO2 concentration increases, the ocean continuously absorbs anthropogenic CO2, reducing seawater pH and [CO32-], which is termed ocean acidification. We perform Earth system model simulations to assess CO2-induced acidification for ocean in the East China, one of the most vulnerable areas to ocean acidification. By year 2017, ocean surface pH in the East China drops from the preindustrial level of 8.20 to 8.06, corresponding to a 35% rise in [H+], and reduction rate of pH becomes faster in the last two decades. Changes in surface seawater acidity largely result from CO2-induced changes in surface dissolved inorganic carbon (DIC), alkalinity (ALK), salinity and temperature, among which DIC plays the most important role. By year 2300, simulated reduction in sea surface [CO32-] is 13% under RCP2.6, contrasted to 72% under RCP8.5. Furthermore, simulated results show that CO2-induced warming acts to mitigate reductions in [CO32-], but the individual effect of oceanic CO2 uptake is much greater than the effect of CO2-induced warming on ocean acidification. Our study quantifies ocean acidification induced by anthropogenic CO2, and indicates the potentially important role of accelerated CO2 emissions in projections of future changes in biogeochemistry and ecosystem of ocean in the East China.
引用
收藏
页数:15
相关论文
共 88 条
[31]  
Huang JP, 2017, NAT CLIM CHANGE, V7, P417, DOI [10.1038/nclimate3275, 10.1038/NCLIMATE3275]
[32]  
Hunke EC, 1997, J PHYS OCEANOGR, V27, P1849, DOI 10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO
[33]  
2
[34]   Phytoplankton calcification in a high-CO2 world [J].
Iglesias-Rodriguez, M. Debora ;
Halloran, Paul R. ;
Rickaby, Rosalind E. M. ;
Hall, Ian R. ;
Colmenero-Hidalgo, Elena ;
Gittins, John R. ;
Green, Darryl R. H. ;
Tyrrell, Toby ;
Gibbs, Samantha J. ;
von Dassow, Peter ;
Rehm, Eric ;
Armbrust, E. Virginia ;
Boessenkool, Karin P. .
SCIENCE, 2008, 320 (5874) :336-340
[35]  
Ishimatsu Atsushi, 2010, P283
[36]   THE INFLUENCE OF ORGANIC-MATTER DIAGENESIS ON CACO3 DISSOLUTION AT THE DEEP-SEA FLOOR [J].
JAHNKE, RA ;
CRAVEN, DB ;
GAILLARD, JF .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1994, 58 (13) :2799-2809
[37]   Decline in the species richness contribution of Echinodermata to the macrobenthos in the shelf seas of China [J].
Jin, Shaofei ;
Wang, Yongli ;
Xia, Jiangjiang ;
Xiao, Ning ;
Zhang, Junlong ;
Xiong, Zhe .
PHYSICS AND CHEMISTRY OF THE EARTH, 2015, 87-88 :43-49
[38]   DISSOLUTION KINETICS OF BIOGENIC CALCIUM CARBONATES IN SEAWATER [J].
KEIR, RS .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1980, 44 (02) :241-252
[39]   A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) [J].
Key, RM ;
Kozyr, A ;
Sabine, CL ;
Lee, K ;
Wanninkhof, R ;
Bullister, JL ;
Feely, RA ;
Millero, FJ ;
Mordy, C ;
Peng, TH .
GLOBAL BIOGEOCHEMICAL CYCLES, 2004, 18 (04) :1-23
[40]   Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow [J].
Koweek, David A. ;
Zimmerman, Richard C. ;
Hewett, Kathryn M. ;
Gaylord, Brian ;
Giddings, Sarah N. ;
Nickols, Kerry J. ;
Ruesink, Jennifer L. ;
Stachowicz, John J. ;
Takeshita, Yuichiro ;
Caldeira, Ken .
ECOLOGICAL APPLICATIONS, 2018, 28 (07) :1694-1714