An atomic scale Monte Carlo study of exchange bias in homogeneous/inhomogeneous core/shell Fe3O4/CoO nanoparticles

被引:4
|
作者
Nehme, Z. [1 ]
Labaye, Y. [1 ]
Yaacoub, N. [1 ]
Greneche, J. M. [1 ]
机构
[1] Le Mans Univ, CNRS, UMR 6283, IMMM, F-72085 Le Mans, France
关键词
Magnetic nanoparticles; Core/shell structure; Modeling of nanoparticles; Monte Carlo simulation; Hysteresis loop; Exchange bias coupling; Interface effects; MAGNETIC-PROPERTIES; MODEL; SIMULATION;
D O I
10.1007/s11051-019-4655-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The present work focuses on the study of exchange-biased magnetic core/shell nanoparticles at the atomic scale. The nanoparticles (NPs) consist of a perfectly epitaxial crystalline cobalt oxide (CoO) shell on a magnetite (Fe3O4) core. The numerical core/shell is built by taken into account the spinel structure of the core (Fe3O4) and the face-centered cubic structure of the shell (CoO). Two different configurations of core/shell NPs were examined: homogeneous and inhomogeneous core/shell. Our magnetic simulations are based on a 3D classical Heisenberg model. Monte Carlo simulations performing single spin rotation are used to investigate the effect of exchange bias on the spin configurations and hysteresis loops of core/shell nanoparticles. The numerical results reveal, as expected, a significant hysteresis loop shift obtained for a weak interface coupling. In addition, the magnetization reversal is not perfectly uniform in space when the interfacial coupling is different from zero. Finally, the increase in the magnetic interfacial coupling produces an increase in coercive field and a decrease in the exchange bias field.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An atomic scale Monte Carlo study of exchange bias in homogeneous/inhomogeneous core/shell Fe3O4/CoO nanoparticles
    Z. Nehme
    Y. Labaye
    N. Yaacoub
    J. M. Grenèche
    Journal of Nanoparticle Research, 2019, 21
  • [2] Monte Carlo study of the exchange bias effect in Co/CoO core-shell nanowires
    Patsopoulos, A.
    Kechrakos, D.
    NANOTECHNOLOGY, 2017, 28 (28)
  • [3] Exchange bias behavior of monodisperse Fe3O4/γ-Fe2O3 core/shell nanoparticles
    Hwang, Yosun
    Angappane, S.
    Park, Jongnam
    An, Kwangjin
    Hyeon, T.
    Park, Je-Geun
    CURRENT APPLIED PHYSICS, 2012, 12 (03) : 808 - 811
  • [4] Exchange Bias Effect in CoO@Fe3O4 Core-Shell Octahedron-Shaped Nanoparticles
    Fontaina Troitino, Nerio
    Rivas-Murias, Beatriz
    Rodriguez-Gonzalez, Benito
    Salgueirino, Veronica
    CHEMISTRY OF MATERIALS, 2014, 26 (19) : 5566 - 5575
  • [5] A study of exchange bias effect in Fe3O4/MnO core-shell hetero-nanostructures
    Khamari, Subodh
    Panda, Soumyakanta
    Mohapatra, Niharika
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (04)
  • [6] Systematic Study of Exchange Coupling in Core Shell Fe3-δO4@CoO Nanoparticles
    Liu, Xiaojie
    Pichon, Benoit P.
    Ulhaq, Corinne
    Lefevre, Christophe
    Greneche, Jean-Marc
    Begin, Dominique
    Begin-Colin, Sylvie
    CHEMISTRY OF MATERIALS, 2015, 27 (11) : 4073 - 4081
  • [7] The influence of oxidation process on exchange bias in egg-shaped FeO/Fe3O4 core/shell nanoparticles
    Leszczynski, Blazej
    Hadjipanayis, George C.
    El-Gendy, Ahmed A.
    Zaleski, Karol
    Sniadecki, Zbigniew
    Musial, Andrzej
    Jarek, Marcin
    Jurga, Stefan
    Skumiel, Andrzej
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 416 : 269 - 274
  • [8] Mediating exchange bias by Verwey transition in CoO/Fe3O4 thin film
    Liu, X. H.
    Liu, W.
    Zhang, Z. D.
    Chang, C. F.
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (08)
  • [9] Superspin glass state and exchange bias in amorphous Fe/Fe-O core/shell nanoparticles
    Kumar, P. Anil
    Singh, Gurvinder
    Glomm, Wilhelm R.
    Peddis, Davide
    Wahlstroem, Erik
    Mathieu, R.
    MATERIALS RESEARCH EXPRESS, 2014, 1 (03):
  • [10] Mossbauer Studies of Core-Shell FeO/Fe3O4 Nanoparticles
    Kamzin, A. S.
    Valiullin, A. A.
    Khurshid, H.
    Nemati, Z.
    Srikanth, H.
    Phan, M. H.
    PHYSICS OF THE SOLID STATE, 2018, 60 (02) : 382 - 389