The lack of exponential stability for a class of second-order systems with memory

被引:3
作者
Danese, Valeria [1 ]
Dell'Oro, Filippo [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
关键词
memory kernel; contraction semigroup; stability; exponential stability; ENERGY DECAY; SEMIGROUPS;
D O I
10.1017/S0308210516000330
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse the decay properties of the solution semigroup S(t) generated by the linear integrodifferential equation u(t) + Au(t) + integral(infinity)(0) mu(s)A(gamma)[ u(t) - u(t - s)] ds = 0, where the operator A is strictly positive self-adjoint with A(-1) not necessarily compact. The asymptotic stability of S(t) is investigated in terms of the dependence of the parameter gamma is an element of R. In particular, we show that S(t) is not exponentially stable when gamma not equal 1.
引用
收藏
页码:683 / 702
页数:20
相关论文
共 22 条
[1]  
[Anonymous], 1992, SIAM STUD APPL MATH
[2]   TAUBERIAN-THEOREMS AND STABILITY OF ONE-PARAMETER SEMIGROUPS [J].
ARENDT, W ;
BATTY, CJK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 306 (02) :837-852
[3]  
Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
[4]  
Batty C. J. K., 1994, BANACH CTR PUBLICATI, V30
[5]   Non-uniform stability for bounded semi-groups on Banach spaces [J].
Batty, Charles J. K. ;
Duyckaerts, Thomas .
JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (04) :765-780
[6]   Optimal polynomial decay of functions and operator semigroups [J].
Borichev, Alexander ;
Tomilov, Yuri .
MATHEMATISCHE ANNALEN, 2010, 347 (02) :455-478
[7]  
Curtain RF., 1995, INTRO INFINITE DIMEN
[8]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
[9]   Stability analysis of abstract systems of Timoshenko type [J].
Danese, Valeria ;
Dell'Oro, Filippo ;
Pata, Vittorino .
JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (03) :587-615
[10]  
Engel K. J., 2000, One-parameter Semigroups for Linear Evolution Equations