Pressure-Driven Interface Evolution in Solid-State Lithium Metal Batteries

被引:189
作者
Zhang, Xin [1 ]
Wang, Q. Jane [1 ]
Harrison, Katharine L. [2 ]
Roberts, Scott A. [3 ]
Harris, Stephen J. [4 ]
机构
[1] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[2] Sandia Natl Labs, Nanoscale Sci, Albuquerque, NM 87123 USA
[3] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87123 USA
[4] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
ELECTROLYTE INTERFACE; MECHANICAL-PROPERTIES; DISCRETE CONVOLUTION; EXTERNAL-PRESSURE; NUMERICAL-METHOD; YIELD STRENGTH; CONTACT; LI; NANOINDENTATION; INDENTATION;
D O I
10.1016/j.xcrp.2019.100012
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of solid-state batteries has encountered a number of problems due to the complex interfacial contact conditions between lithium (Li) metal and solid electrolytes (SEs). Recent experiments have shown that applying stack pressure can ameliorate these problems. Here, we report a multi-scale three-dimensional time-dependent contact model for describing the Li-SE interface evolution under stack pressure. Our simulation considers the surface roughness of the Li and SEs, Li elastoplasticity, Li creep, and the Li metal plating/stripping process. Consistency between the very recent experiments from two different research groups indicates effective yield strength of the Li used in those experiments of 16 +/- 2 MPa. We suggest that the preferred stack pressure be at least 20 MPa to maintain a relatively small interface resistance while reducing void volume.
引用
收藏
页数:19
相关论文
共 73 条
[41]   Dendrite growth in lithium/polymer systems - A propagation model for liquid electrolytes under galvanostatic conditions [J].
Monroe, C ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1377-A1384
[42]   Deformation and stress in electrode materials for Li-ion batteries [J].
Mukhopadhyay, Amartya ;
Sheldon, Brian W. .
PROGRESS IN MATERIALS SCIENCE, 2014, 63 :58-116
[43]   Contact mechanics for randomly rough surfaces [J].
Persson, B. N. J. .
SURFACE SCIENCE REPORTS, 2006, 61 (04) :201-227
[44]   A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques [J].
Polonsky, IA ;
Keer, LM .
WEAR, 1999, 231 (02) :206-219
[45]   Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte [J].
Ren, Yaoyu ;
Shen, Yang ;
Lin, Yuanhua ;
Nan, Ce-Wen .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 57 :27-30
[46]   Quantitative model of electrochemical Ostwald ripening and its application to the time-dependent electrode potential of nanocrystalline metals [J].
Schroeder, A. ;
Fleig, J. ;
Gryaznov, D. ;
Maier, J. ;
Sitte, W. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (25) :12274-12280
[47]  
Schultz RP., 2002, Lithium: Measurement of Young's Modulus and Yield Strength
[48]   Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance [J].
Sharafi, Asma ;
Yu, Seungho ;
Naguib, Michael ;
Lee, Marcus ;
Ma, Cheng ;
Meyer, Harry M. ;
Nanda, Jagjit ;
Chi, Maiofang ;
Siegel, Donald J. ;
Sakamoto, Jeff .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (26) :13475-13487
[49]   Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery [J].
Shearing, P. R. ;
Howard, L. E. ;
Jorgensen, P. S. ;
Brandon, N. P. ;
Harris, S. J. .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (03) :374-377
[50]   DETERMINATION OF Q DYNAMIC VISCOSITY AND TRANSIENT CREEP CURVES FROM WAVE PROPAGATION MEASUREMENTS [J].
STRICK, E .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (1-3) :197-&