Pressure-Driven Interface Evolution in Solid-State Lithium Metal Batteries

被引:189
作者
Zhang, Xin [1 ]
Wang, Q. Jane [1 ]
Harrison, Katharine L. [2 ]
Roberts, Scott A. [3 ]
Harris, Stephen J. [4 ]
机构
[1] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[2] Sandia Natl Labs, Nanoscale Sci, Albuquerque, NM 87123 USA
[3] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87123 USA
[4] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
ELECTROLYTE INTERFACE; MECHANICAL-PROPERTIES; DISCRETE CONVOLUTION; EXTERNAL-PRESSURE; NUMERICAL-METHOD; YIELD STRENGTH; CONTACT; LI; NANOINDENTATION; INDENTATION;
D O I
10.1016/j.xcrp.2019.100012
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of solid-state batteries has encountered a number of problems due to the complex interfacial contact conditions between lithium (Li) metal and solid electrolytes (SEs). Recent experiments have shown that applying stack pressure can ameliorate these problems. Here, we report a multi-scale three-dimensional time-dependent contact model for describing the Li-SE interface evolution under stack pressure. Our simulation considers the surface roughness of the Li and SEs, Li elastoplasticity, Li creep, and the Li metal plating/stripping process. Consistency between the very recent experiments from two different research groups indicates effective yield strength of the Li used in those experiments of 16 +/- 2 MPa. We suggest that the preferred stack pressure be at least 20 MPa to maintain a relatively small interface resistance while reducing void volume.
引用
收藏
页数:19
相关论文
共 73 条
[1]   Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes [J].
Ahmad, Zeeshan ;
Viswanathan, Venkatasubramanian .
PHYSICAL REVIEW LETTERS, 2017, 119 (05)
[2]   On the elastic effects in power-law indentation creep with sharp conical indenters [J].
Alkorta, Jon ;
Martinez-Esnaola, Jos Manuel ;
Sevillano, Javier Gil .
JOURNAL OF MATERIALS RESEARCH, 2008, 23 (01) :182-188
[3]   Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes [J].
Arora, P ;
Doyle, M ;
White, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (10) :3543-3553
[4]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[5]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[6]   Numerical generation of arbitrarily oriented non-Gaussian three-dimensional rough surfaces [J].
Bakolas, V .
WEAR, 2003, 254 (5-6) :546-554
[7]   Mechanical Stress Induced Current Focusing and Fracture in Grain Boundaries [J].
Barai, Pallab ;
Higa, Kenneth ;
Ngo, Anh T. ;
Curtiss, Larry A. ;
Srinivasan, Venkat .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (10) :A1752-A1762
[8]   Impact of External Pressure and Electrolyte Transport Properties on Lithium Dendrite Growth [J].
Barai, Pallab ;
Higa, Kenneth ;
Srinivasan, Venkat .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (11) :A2654-A2666
[9]   Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study [J].
Barai, Pallab ;
Higa, Kenneth ;
Srinivasan, Venkat .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) :A180-A189
[10]   INDENTATION OF A POWER LAW CREEPING SOLID [J].
BOWER, AF ;
FLECK, NA ;
NEEDLEMAN, A ;
OGBONNA, N .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1993, 441 (1911) :97-124