RKDG finite element schemes combined with a gas-kinetic methods for one-dimensional compressible Euler equations

被引:0
作者
Yu, XJ [1 ]
Dai, QF [1 ]
机构
[1] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
来源
CURRENT TRENDS IN SCIENTIFIC COMPUTING | 2003年 / 329卷
关键词
Boltzmann equation; RKDG finite element method; one-dimensional compressible Euler equations;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, two numerical methods are developed for solving one-dimensional compressible Euler equations by the RKDG finite element method. The schemes are obtained based on an important relation between the Boltzmann equation and the Euler equations. The schemes have the TVD-like property for uniform meshes. Several numerical results are presented for the performance of the schemes.
引用
收藏
页码:355 / 372
页数:18
相关论文
共 30 条
[1]  
[Anonymous], THESIS COLUMBIA U
[2]  
Cercignani C, 1988, BOLTZMANN EQUATION I
[3]  
Chapman S., 1970, MATH THEORY NONUNIFO
[4]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[5]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .3. ONE-DIMENSIONAL SYSTEMS [J].
COCKBURN, B ;
LIN, SY ;
SHU, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 84 (01) :90-113
[6]  
DESHPANDE SM, 2613 NASA
[7]  
EPPARD W, AIAA 11 CFD C ORL FL
[8]  
GHIDAOUI M, 1997, UNPUB J HYDRAULIC EN
[9]  
HARTEN A, 1987, J COMPUT PHYS, V71, P231, DOI [10.1016/0021-9991(87)90031-3, 10.1006/jcph.1996.5632]
[10]   HIGH-RESOLUTION SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 49 (03) :357-393