Two-mode Gaussian product states in a lossy interferometer

被引:3
作者
Jaseem, Noufal [1 ]
Shaji, Anil [1 ]
机构
[1] Indian Inst Sci Educ & Res, Sch Phys, Thiruvananthapuram 695016, Kerala, India
关键词
Quantum metrology; Two-mode Gaussian states; Photon loss; Quantum Fisher information; QUANTUM; LIMIT;
D O I
10.1007/s11128-017-1671-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum Fisher information for a two-mode, Gaussian product state in an interferometer subject to photon loss is studied. We obtain the quantum Cramer-Rao bound on the achievable precision in phase estimation using such states. The scaling of the measurement precision with the mean photon number is compared to the shot noise-limited scaling for dual squeezed vacuum states and dual squeezed, displaced vacuum states.
引用
收藏
页数:14
相关论文
共 30 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   Gaussian interferometric power [J].
Adesso, Gerardo .
PHYSICAL REVIEW A, 2014, 90 (02)
[3]   Gravitational radiation detection with laser interferometry [J].
Adhikari, Rana X. .
REVIEWS OF MODERN PHYSICS, 2014, 86 (01) :121-151
[4]   Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit [J].
Anisimov, Petr M. ;
Raterman, Gretchen M. ;
Chiruvelli, Aravind ;
Plick, William N. ;
Huver, Sean D. ;
Lee, Hwang ;
Dowling, Jonathan P. .
PHYSICAL REVIEW LETTERS, 2010, 104 (10)
[5]   Phase estimation for thermal Gaussian states [J].
Aspachs, M. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. .
PHYSICAL REVIEW A, 2009, 79 (03)
[6]   Generalized uncertainty relations: Theory, examples, and Lorentz invariance [J].
Braunstein, SL ;
Caves, CM ;
Milburn, GJ .
ANNALS OF PHYSICS, 1996, 247 (01) :135-173
[7]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[8]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708
[9]   Quantum phase estimation with lossy interferometers [J].
Demkowicz-Dobrzanski, R. ;
Dorner, U. ;
Smith, B. J. ;
Lundeen, J. S. ;
Wasilewski, W. ;
Banaszek, K. ;
Walmsley, I. A. .
PHYSICAL REVIEW A, 2009, 80 (01)
[10]   Quantum Limits in Optical Interferometry [J].
Demkowicz-Dobrzanski, Rafal ;
Jarzyna, Marcin ;
Kolodynski, Jan .
PROGRESS IN OPTICS, VOL 60, 2015, 60 :345-435