3D Modeling of the Mechanical Behavior of Ceramics with Pores of Different Size

被引:1
作者
Smolin, Alexey Yu. [1 ,2 ]
Eremina, Galina M. [2 ]
Konovalenko, Igor S. [1 ]
Psakhie, Sergey G. [3 ,4 ]
机构
[1] Inst Strength Phys & Mat Sci SB RAS, Tomsk 634055, Russia
[2] Natl Res Tomsk State Univ, Tomsk 634050, Russia
[3] Natl Res Tomsk Polytechn Univ, Inst High Technol Phys, Tomsk 634050, Russia
[4] Skolkovo Inst Sci & Technol, Skolkovo 143025, Russia
来源
INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS OF MULTILEVEL SYSTEMS 2014 | 2014年 / 1623卷
关键词
porous ceramics; mechanical properties; modeling; movable cellular automata; DEFORMATION; SIMULATION; FRACTURE; MEDIA;
D O I
10.1063/1.4899014
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Movable cellular automaton method was used for simulating uniaxial compression of 3D porous ceramic samples. Pores were considered explicitly by removing randomly selected automata from the original FCC packing. Distribution of pores in space, their size and the total fraction were varied. It is shown that the relation between mechanical properties of the material and its porosity significantly depends on the pore size. Thus, value of the elastic modulus of the samples with large pores is greater than that of the samples with small pores by average value of 3%-16%. Strength value of the samples with large pores is less than that of the samples with small pores by average value of 12% up to the porosity of 0.55, and then becomes to be greater. When the samples contain small and large pores there is a maximum of mechanical properties at ratio of volumes of large and small pores of about 0.75.
引用
收藏
页码:591 / 594
页数:4
相关论文
共 11 条
[1]   Dependence of the macroscopic elastic properties of porous media on the parameters of a stochastic spatial pore distribution [J].
Konovalenko, Ig. S. ;
Smolin, A. Yu. ;
Korostelev, S. Yu. ;
Psakh'e, S. G. .
TECHNICAL PHYSICS, 2009, 54 (05) :758-761
[2]   FRACTURE OF COMPRESSED BRITTLE BODIES WITH A CRACK [J].
Kostandov, Yu. A. ;
Makarov, P. V. ;
Eremin, M. O. ;
Smolin, I. Yu. ;
Shipoyskii, I. E. .
INTERNATIONAL APPLIED MECHANICS, 2013, 49 (01) :95-101
[3]   Percolation transitions in porous structure and their effect on physicochemical properties of ceramics [J].
Kul'kov, S. N. ;
Buyakova, S. P. ;
Smolin, A. Yu. ;
Roman, N. V. ;
Kinelovskii, S. A. .
TECHNICAL PHYSICS LETTERS, 2011, 37 (04) :360-363
[4]   Structure, phase composition and mechanical properties of ZrO2-based nanosystems [J].
Kulkov, S. N. .
PHYSICAL MESOMECHANICS, 2008, 11 (1-2) :29-41
[5]   Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials [J].
Psakhie, S. ;
Shilko, E. ;
Smolin, A. ;
Astafurov, S. ;
Ovcharenko, V. .
FRATTURA ED INTEGRITA STRUTTURALE, 2013, 24 (24) :26-58
[6]   Approach to simulation of deformation and fracture of hierarchically organized heterogeneous media, including contrast media [J].
Psakhie, S. G. ;
Shilko, E. V. ;
Smolin, A. Yu ;
Dimaki, A. V. ;
Dmitriev, A. I. ;
Konovalenko, Ig S. ;
Astafurov, S. V. ;
Zavshek, S. .
PHYSICAL MESOMECHANICS, 2011, 14 (5-6) :224-248
[7]   Numerical method for constructing a continual deformation model equivalent to a specified discrete element model [J].
Revuzhenko, A. F. ;
Klishin, S. V. .
PHYSICAL MESOMECHANICS, 2013, 16 (02) :152-161
[8]   The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: Insights from DEM modelling [J].
Schopfer, Martin P. J. ;
Abe, Steffen ;
Childs, Conrad ;
Walsh, John J. .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2009, 46 (02) :250-261
[9]   COMPUTER SIMULATION OF THE RELATION BETWEEN MECHANICAL BEHAVIOR AND STRUCTURAL EVOLUTION OF OXIDE CERAMICS UNDER DYNAMIC LOADING [J].
Skripnyak, V. A. ;
Skripnyak, E. G. ;
Kozulin, A. A. ;
Skripnyak, V. V. ;
Korobenkov, M. V. .
RUSSIAN PHYSICS JOURNAL, 2009, 52 (12) :1300-1308
[10]   3D simulation of dependence of mechanical properties of porous ceramics on porosity [J].
Smolin, A. Yu. ;
Roman, N. V. ;
Konovalenko, I. S. ;
Eremina, G. M. ;
Buyakova, S. P. ;
Psakhie, S. G. .
ENGINEERING FRACTURE MECHANICS, 2014, 130 :53-64