ON PSEUDOSPECTRA, CRITICAL POINTS, AND MULTIPLE EIGENVALUES OF MATRIX PENCILS

被引:17
作者
Ahmad, Sk Safique [1 ]
Alam, Rafikul [1 ]
Byers, Ralph [2 ]
机构
[1] Indian Inst Technol, Dept Math, Gauhati 781039, India
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
关键词
matrix pencil; pseudospectrum; backward error; multiple eigenvalue; SENSITIVITY;
D O I
10.1137/070711645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a general framework for defining and analyzing pseudospectra of matrix pencils. The framework so developed unifies various definitions of pseudospectra of matrix pencils proposed in the literature. We introduce and analyze critical points of backward errors of approximate eigenvalues of matrix pencils and show that each critical point is a multiple eigenvalue of an appropriately perturbed pencil. We show that common boundary points of components of pseudospectra of a matrix pencil are critical points. In particular, we show that a minimal critical point can be read off from the pseudospectra of matrix pencils. Hence we show that a solution of Wilkinson's problem for a matrix pencil can be read off from the pseudospectra of the matrix pencil.
引用
收藏
页码:1915 / 1933
页数:19
相关论文
共 16 条
[1]  
AHMAD SS, 2007, THESIS INDIAN I TECH
[2]   On sensitivity of eigenvalues and eigendecompositions of matrices [J].
Alam, R ;
Bora, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 396 :273-301
[3]   On pseudospectra of matrix polynomials and their boundaries [J].
Boulton, Lyonell ;
Lancaster, Peter ;
Psarrakos, Panayiotis .
MATHEMATICS OF COMPUTATION, 2008, 77 (261) :313-334
[4]   The generalized eigenvalue problem for nonsquare pencils using a minimal perturbation approach [J].
Boutry, G ;
Elad, M ;
Golub, GH ;
Milanfar, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (02) :582-601
[5]  
FRAYSSE V, 1996, TRPA9619
[6]   More on pseudospectra for polynomial eigenvalue problems and applications in control theory [J].
Higham, NJ ;
Tisseur, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 351 :435-453
[7]   Pseudospectra of linear matrix pencils by block diagonalization [J].
Lavallee, PF ;
Sadkane, M .
COMPUTING, 1998, 60 (02) :133-156
[8]  
LIMAYE B. V., 1996, Functional analysis, V2nd
[9]   GENERALIZED EPSILON-PSEUDOSPECTRA [J].
RIEDEL, KS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :1219-1225
[10]   Cyclic deformation behaviour of commercially pure titanium at cryogenic temperature [J].
Sun, QY ;
Song, XP ;
Gu, HC .
INTERNATIONAL JOURNAL OF FATIGUE, 2001, 23 (03) :187-191