35TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 8TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE
|
1997年
关键词:
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper presents a method to combine a set of unsupervised algorithms that can accurately disambiguate word senses in a large, completely untagged corpus. Although most of the techniques for word sense resolution have been presented as stand-alone, it is our belief that full-fledged lexical ambiguity resolution should combine several information sources and techniques. The set of techniques have been applied in a combined way to disambiguate the genus terms of two machine-readable dictionaries (MRD), enabling us to construct complete taxonomies for Spanish and French. Tested accuracy is above 80% overall and 95% for two-way ambiguous genus terms, showing that taxonomy building is not limited to structured dictionaries such as LDOCE.