Electrical Transport Properties of Gallium Phosphide under High Pressure

被引:3
作者
Li, Yuqiang [1 ,2 ]
Liu, Jie [1 ]
Xiao, Ningru [2 ]
Yu, Liyuan [1 ]
Zhang, Jianxin [1 ]
Ning, Pingfan [2 ,3 ]
Zhang, Zanyun [2 ,4 ]
Niu, Pingjuan [1 ,2 ]
机构
[1] Tianjin Polytech Univ, Sch Elect Engn & Automat, Tianjin Key Lab Adv Elect Engn & Energy Technol, Tianjin 300387, Peoples R China
[2] Tianjin Polytech Univ, Int Res Ctr Photon, Engn Res Ctr High Power Solid State Lighting Appl, Minist Educ, Tianjin 300387, Peoples R China
[3] Otto von Guericke Univ, Inst Phys, D-39106 Magdeburg, Germany
[4] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2020年 / 257卷 / 03期
基金
中国国家自然科学基金;
关键词
diamond anvil cells; Hall effect; high pressures; metallization; resistivity; METAL TRANSITION; GAP; SEMICONDUCTORS; BEHAVIOR;
D O I
10.1002/pssb.201900470
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The electrical transport properties of gallium phosphide (GaP) under high pressure (up to 50 GPa) are investigated using in situ impedance-spectrum and Hall-effect measurements. A discontinuous resistance is observed at 9.9 GPa because of the pressure-induced grain boundary effect, whereas the pressure-induced metallization of GaP occurred at approximate to 24.6 GPa. The metallization transition is determined by measuring the temperature-dependent resistance and resistivity, and the transition is observed to be reversible. The main cause of the sharp decrease in the resistance and resistivity is a pressure-induced structural phase transition at 39.3 GPa, as reflected by the measured Hall parameters.
引用
收藏
页数:5
相关论文
共 30 条
  • [1] High-pressure phase of GaP: Structure and chemical ordering
    Aquilanti, G.
    Libotte, H.
    Crichton, W. A.
    Pascarelli, S.
    Trapananti, A.
    Itie, J.-P.
    [J]. PHYSICAL REVIEW B, 2007, 76 (06):
  • [2] Evidence of a pressure-induced metallization process in monoclinic VO2
    Arcangeletti, E.
    Baldassarre, L.
    Di Castro, D.
    Lupi, S.
    Malavasi, L.
    Marini, C.
    Perucchi, A.
    Postorino, P.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (19)
  • [3] ULTRAHIGH PRESSURE APPARATUS USING CEMENTED TUNGSTEN CARBIDE PISTONS WITH SINTERED DIAMOND TIPS
    BUNDY, FP
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1975, 46 (10) : 1318 - 1324
  • [4] Metallization of the Single Component Molecular Semiconductor [Ni(ptdt)2] under Very High Pressure
    Cui, Hengbo
    Brooks, James S.
    Kobayashi, Akiko
    Kobayashi, Hayao
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (18) : 6358 - +
  • [5] Anomalous behavior of the semiconducting gap in WO3 from first-principles calculations
    de Wijs, GA
    de Boer, PK
    de Groot, RA
    Kresse, G
    [J]. PHYSICAL REVIEW B, 1999, 59 (04): : 2684 - 2693
  • [6] Metallic CsI at pressures of up to 220 gigapascals
    Eremets, MI
    Shimizu, K
    Kobayashi, TC
    Amaya, K
    [J]. SCIENCE, 1998, 281 (5381) : 1333 - 1335
  • [7] Integrated microcircuit on a diamond anvil for high-pressure electrical resistivity measurement
    Han, YH
    Gao, CX
    Ma, YZ
    Liu, HW
    Pan, YW
    Luo, JF
    Li, M
    He, CY
    Huang, XW
    Zou, GT
    [J]. APPLIED PHYSICS LETTERS, 2005, 86 (06) : 1 - 3
  • [8] Studies of temperature dependent ac impedance of a negative temperature coefficient Mn-Co-Ni-O thin film thermistor
    He, Lin
    Ling, Zhiyuan
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (24)
  • [9] MEASUREMENT OF HIGH-RESISTIVITY SEMICONDUCTORS USING VANDERPAUW METHOD
    HEMENGER, PM
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1973, 44 (06) : 698 - 700
  • [10] GAP SEMICONDUCTING TO METAL TRANSITION NEAR 220 KBAR AND 298DEGREES K
    HOMAN, CG
    KENDALL, DP
    DAVIDSON, TE
    FRANKEL, J
    [J]. SOLID STATE COMMUNICATIONS, 1975, 17 (07) : 831 - 832