Non-universal Interspecific Allometric Scaling of Metabolism

被引:4
作者
da Silva, Jafferson K. L. [1 ]
Barbosa, Lauro A. [2 ]
机构
[1] Univ Fed Minas Gerais, Dept Fis, Inst Ciencias Exatas, BR-30123970 Belo Horizonte, MG, Brazil
[2] Univ Fed Reconcavo Bahia, Ctr Formacao Professores, BR-45300000 Amargosa, BA, Brazil
基金
巴西圣保罗研究基金会;
关键词
Allometry; Interspecific Biological Scaling; Metabolism; Basal Metabolic Rate; Maximum Metabolic Rate; Mammals; Birds; BODY-MASS; RESPIRATORY VARIABLES; OXYGEN-CONSUMPTION; MAMMALS; BIRDS; MAXIMUM; LAWS; ORGANISMS; DIFFUSION; BIOLOGY;
D O I
10.1590/S0103-97332009000600014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend a previously theory for the interspecific allometric scaling developed in a d+1-dimensional space of metabolic states. The time, which is characteristic of all biological processes, is included as an extra dimension to d biological lengths. The different metabolic rates, such as basal (BMR) and maximum (MMR), are described by supposing that the biological lengths and time are related by different transport processes of energy and mass. We consider that the metabolic rates of animals are controlled by three main transport processes: convection, diffusion and anomalous diffusion. Different transport mechanisms are related to different metabolic states, with its own values for allometric exponents. In d = 3, we obtain that the exponent b of BMR is b = 0.71, and that the aerobic sustained MMR upper value of the exponent is b = 0.86 (best empirical values for mammals: b = 0.69(2) and b = 0.87(3)). The 3/4-law appears as an upper limit of BMR. The MMR scaling in different conditions, other exponents related to BMR and MMR, and the metabolism of unicellular organisms are also discussed.
引用
收藏
页码:699 / 706
页数:8
相关论文
共 50 条
[31]   Allometric and temporal scaling of movement characteristics in Galapagos tortoises [J].
Bastille-Rousseau, Guillaume ;
Yackulic, Charles B. ;
Frair, Jacqueline L. ;
Cabrera, Freddy ;
Blake, Stephen .
JOURNAL OF ANIMAL ECOLOGY, 2016, 85 (05) :1171-1181
[32]   Revisiting the evolutionary origin of allometric metabolic scaling in biology [J].
Apol, M. Emile F. ;
Etienne, Rampal S. ;
Olff, Han .
FUNCTIONAL ECOLOGY, 2008, 22 (06) :1070-1080
[33]   Allometric Relations and Scaling Laws for the Cardiovascular System of Mammals [J].
Dawson, Thomas H. .
SYSTEMS, 2014, 2 (02) :168-185
[34]   Allometric scaling of brain regions to intra-cranial volume: An epidemiological MRI study [J].
de Jong, Laura W. ;
Vidal, Jean-Sebastien ;
Forsberg, Lars E. ;
Zijdenbos, Alex P. ;
Haight, Thaddeus ;
Sigurdsson, Sigurdur ;
Gudnason, Vilmundur ;
van Buchem, Mark A. ;
Launer, Lenore J. .
HUMAN BRAIN MAPPING, 2017, 38 (01) :151-164
[35]   Non-invasive assessment of allometric scaling laws in the human coronary tree [J].
Craiem D. ;
Casciaro M.E. ;
Graf S. ;
Gurfinkel E.P. ;
Armentano R.L. .
Artery Research, 2011, 5 (1) :15-23
[36]   Allometric scaling law in a simple oxygen exchanging network:: possible implications on the biological allometric scaling laws [J].
Santillán, M .
JOURNAL OF THEORETICAL BIOLOGY, 2003, 223 (02) :249-257
[37]   Allometric Scaling of the Tectofugal Pathway in Birds [J].
Iwaniuk, Andrew N. ;
Gutierrez-Ibanez, Cristian ;
Pakan, Janelle M. P. ;
Wylie, Douglas R. .
BRAIN BEHAVIOR AND EVOLUTION, 2010, 75 (02) :122-137
[38]   Allometric scaling in the coronary arterial system [J].
Huy Q. Le ;
Jerry T. Wong ;
Sabee Molloi .
The International Journal of Cardiovascular Imaging, 2008, 24 :771-781
[39]   Allometric Scaling of Weighted Food Webs [J].
Zhang, Jiang .
COMPLEX SCIENCES, PT 2, 2009, 5 :1441-1450
[40]   New Allometric Scaling Relationships and Applications for Dose and Toxicity Extrapolation [J].
Cao, Qiming ;
Yu, Jimmy ;
Connell, Des .
INTERNATIONAL JOURNAL OF TOXICOLOGY, 2014, 33 (06) :482-489