Machine-learning interatomic potential for W-Mo alloys

被引:14
|
作者
Nikoulis, Giorgos [1 ,2 ]
Byggmastar, Jesper [2 ]
Kioseoglou, Joseph [1 ]
Nordlund, Kai [2 ]
Djurabekova, Flyura [2 ,3 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece
[2] Univ Helsinki, Dept Phys, POB 43, FI-00014 Helsinki, Finland
[3] Helsinki Inst Phys, Helsinki, Finland
基金
欧盟地平线“2020”;
关键词
interatomic potential; machine learning; tungsten; molybdenum; alloys; THRESHOLD DISPLACEMENT ENERGIES; MOLECULAR-DYNAMICS; METALS;
D O I
10.1088/1361-648X/ac03d1
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, we develop a machine-learning interatomic potential for WxMo1-x random alloys. The potential is trained using the Gaussian approximation potential framework and density functional theory data produced by the Vienna ab initio simulation package. The potential focuses on properties such as elastic properties, melting, and point defects for the whole range of WxMo1-x compositions. Moreover, we use all-electron density functional theory data to fit an adjusted Ziegler-Biersack-Littmarck potential for the short-range repulsive interaction. We use the potential to investigate the effect of alloying on the threshold displacement energies and find a significant dependence on the local chemical environment and element of the primary recoiling atom.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] First-principles study phonon and thermodynamic properties of binary W-Mo alloys
    Shen, Yan Hong
    Yu, You
    Deng, Jiang
    Kong, Xiang Gang
    Tian, Xiao Feng
    Li, Ye Gu
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [42] Machine Learning Interatomic Potential for High-Throughput Screening of High-Entropy Alloys
    Anup Pandey
    Jonathan Gigax
    Reeju Pokharel
    JOM, 2022, 74 : 2908 - 2920
  • [43] First-principles study phonon and thermodynamic properties of binary W-Mo alloys
    Shen, Yan Hong
    Yu, You
    Deng, Jiang
    Kong, Xiang Gang
    Tian, Xiao Feng
    Li, Ye Gu
    Materials Today Communications, 2022, 33
  • [44] Machine Learning Interatomic Potential for High-Throughput Screening of High-Entropy Alloys
    Pandey, Anup
    Gigax, Jonathan
    Pokharel, Reeju
    JOM, 2022, 74 (08) : 2908 - 2920
  • [45] Development of a general-purpose machine-learning interatomic potential for aluminum by the physically informed neural network method
    Pun, G. P. Purja
    Yamakov, V.
    Hickman, J.
    Glaessgen, E. H.
    Mishin, Y.
    PHYSICAL REVIEW MATERIALS, 2020, 4 (11)
  • [46] A ternary EAM interatomic potential for U-Mo alloys with xenon
    Smirnova, D. E.
    Kuksin, A. Yu
    Starikov, S. V.
    Stegailov, V. V.
    Insepov, Z.
    Rest, J.
    Yacout, A. M.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2013, 21 (03)
  • [47] Exploring diffusion behavior of superionic materials using machine-learning interatomic potentials
    Hsing, Cheng-Rong
    Nguyen, Duc-Long
    Wei, Ching -Ming
    PHYSICAL REVIEW MATERIALS, 2024, 8 (04):
  • [48] An accurate and transferable machine learning interatomic potential for nickel
    Gong, Xiaoguo
    Li, Zhuoyuan
    Pattamatta, A. S. L. Subrahmanyam
    Wen, Tongqi
    Srolovitz, David J.
    COMMUNICATIONS MATERIALS, 2024, 5 (01)
  • [49] Residual Stress in W-Mo Composite Target
    Shuanbin, Tan
    Yusheng, Su
    Zhencheng, Sun
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 1998, 27 (02):
  • [50] Wave impedance of W-Mo system composite
    Shen, Q
    Zhang, LM
    Tan, H
    Jing, FQ
    JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, 2003, 10 (05): : 35 - 38