Machine-learning interatomic potential for W-Mo alloys

被引:14
|
作者
Nikoulis, Giorgos [1 ,2 ]
Byggmastar, Jesper [2 ]
Kioseoglou, Joseph [1 ]
Nordlund, Kai [2 ]
Djurabekova, Flyura [2 ,3 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece
[2] Univ Helsinki, Dept Phys, POB 43, FI-00014 Helsinki, Finland
[3] Helsinki Inst Phys, Helsinki, Finland
基金
欧盟地平线“2020”;
关键词
interatomic potential; machine learning; tungsten; molybdenum; alloys; THRESHOLD DISPLACEMENT ENERGIES; MOLECULAR-DYNAMICS; METALS;
D O I
10.1088/1361-648X/ac03d1
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, we develop a machine-learning interatomic potential for WxMo1-x random alloys. The potential is trained using the Gaussian approximation potential framework and density functional theory data produced by the Vienna ab initio simulation package. The potential focuses on properties such as elastic properties, melting, and point defects for the whole range of WxMo1-x compositions. Moreover, we use all-electron density functional theory data to fit an adjusted Ziegler-Biersack-Littmarck potential for the short-range repulsive interaction. We use the potential to investigate the effect of alloying on the threshold displacement energies and find a significant dependence on the local chemical environment and element of the primary recoiling atom.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Importance of Adjusting Coefficients in Cost Function for Construction of High-Accuracy Machine-Learning Interatomic Potential
    Irie, Ayu
    Shimamura, Kohei
    Koura, Akihide
    Shimojo, Fuyuki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (04)
  • [32] Development of machine learning interatomic potential for zinc
    Mei, Haojie
    Cheng, Luyao
    Chen, Liang
    Wang, Feifei
    Li, Jinfu
    Kong, Lingti
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 233
  • [33] Machine Learning Interatomic Potential for Molten TiZrHfNb
    Balyakin, I. A.
    Rempel, A. A.
    VII INTERNATIONAL YOUNG RESEARCHERS' CONFERENCE - PHYSICS, TECHNOLOGY, INNOVATIONS (PTI-2020), 2020, 2313
  • [34] Optimized symmetry functions for machine-learning interatomic potentials of multicomponent systems
    Rostami, Samare
    Amsler, Maximilian
    Ghasemi, S. Alireza
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (12):
  • [35] Machine-learning interatomic potentials for pyrolysis of polysiloxanes and properties of SiCO ceramics
    Falgoust, Mitchell
    Kroll, Peter
    Journal of the American Ceramic Society, 1600, 107 (12): : 7653 - 7664
  • [36] Prediction of sintered density of binary W(Mo) alloys using machine learning
    He-Xiong Liu
    Yun-Fei Yang
    Yong-Feng Cai
    Chang-Hao Wang
    Chen Lai
    Yao-Wu Hao
    Jin-Shu Wang
    Rare Metals, 2023, 42 (08) : 2713 - 2724
  • [37] Prediction of sintered density of binary W(Mo) alloys using machine learning
    He-Xiong Liu
    Yun-Fei Yang
    Yong-Feng Cai
    Chang-Hao Wang
    Chen Lai
    Yao-Wu Hao
    Jin-Shu Wang
    Rare Metals, 2023, 42 : 2713 - 2724
  • [38] Prediction of sintered density of binary W(Mo) alloys using machine learning
    Liu, He-Xiong
    Yang, Yun-Fei
    Cai, Yong-Feng
    Wang, Chang-Hao
    Lai, Chen
    Hao, Yao-Wu
    Wang, Jin-Shu
    RARE METALS, 2023, 42 (08) : 2713 - 2724
  • [39] Machine-learning interatomic potentials for pyrolysis of polysiloxanes and properties of SiCO ceramics
    Falgoust, Mitchell
    Kroll, Peter
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (12) : 7653 - 7664
  • [40] Machine-learning potential of a single pendulum
    Mandal, Swarnendu
    Sinha, Sudeshna
    Shrimali, Manish Dev
    PHYSICAL REVIEW E, 2022, 105 (05)