Machine-learning interatomic potential for W-Mo alloys

被引:14
|
作者
Nikoulis, Giorgos [1 ,2 ]
Byggmastar, Jesper [2 ]
Kioseoglou, Joseph [1 ]
Nordlund, Kai [2 ]
Djurabekova, Flyura [2 ,3 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece
[2] Univ Helsinki, Dept Phys, POB 43, FI-00014 Helsinki, Finland
[3] Helsinki Inst Phys, Helsinki, Finland
基金
欧盟地平线“2020”;
关键词
interatomic potential; machine learning; tungsten; molybdenum; alloys; THRESHOLD DISPLACEMENT ENERGIES; MOLECULAR-DYNAMICS; METALS;
D O I
10.1088/1361-648X/ac03d1
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, we develop a machine-learning interatomic potential for WxMo1-x random alloys. The potential is trained using the Gaussian approximation potential framework and density functional theory data produced by the Vienna ab initio simulation package. The potential focuses on properties such as elastic properties, melting, and point defects for the whole range of WxMo1-x compositions. Moreover, we use all-electron density functional theory data to fit an adjusted Ziegler-Biersack-Littmarck potential for the short-range repulsive interaction. We use the potential to investigate the effect of alloying on the threshold displacement energies and find a significant dependence on the local chemical environment and element of the primary recoiling atom.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A machine-learning interatomic potential to understand the anisotropic fracture behavior of BaZrO3 material
    Wang, Zhaoyang
    Jing, Yuhang
    Zhang, Chuan
    Sun, Yi
    Li, Weiqi
    Yang, Jianqun
    Li, Xingji
    SOLID STATE IONICS, 2023, 401
  • [22] Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron
    Dragoni, Daniele
    Daff, Thomas D.
    Csanyi, Gabor
    Marzari, Nicola
    PHYSICAL REVIEW MATERIALS, 2018, 2 (01):
  • [23] Probing degradation at solid-state battery interfaces using machine-learning interatomic potential
    Kim, Kwangnam
    Adelstein, Nicole
    Dive, Aniruddha
    Grieder, Andrew
    Kang, Shinyoung
    Wood, Brandon C.
    Wan, Liwen F.
    ENERGY STORAGE MATERIALS, 2024, 73
  • [24] Reproduction of Melting and Crystallization of Sodium by Machine-Learning Interatomic Potential Based on Artificial Neural Networks
    Irie, Ayu
    Fukushima, Shogo
    Koura, Akihide
    Shimamura, Kohei
    Shimojo, Fuyuki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (09)
  • [25] High-temperature phonon transport properties of SnSe from machine-learning interatomic potential
    Liu, Huan
    Qian, Xin
    Bao, Hua
    Zhao, C. Y.
    Gu, Xiaokun
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (40)
  • [26] Multiscale machine-learning interatomic potentials for ferromagnetic and liquid iron
    Byggmastar, J.
    Nikoulis, G.
    Fellman, A.
    Granberg, F.
    Djurabekova, F.
    Nordlund, K.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (30)
  • [27] Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning
    Podryabinkin, Evgeny, V
    Tikhonov, Evgeny, V
    Shapeev, Alexander, V
    Oganov, Artem R.
    PHYSICAL REVIEW B, 2019, 99 (06)
  • [28] First-principles investigation of W-V and W-Mo alloys as potential plasma facing materials (PFMs) for nuclear application
    Phasha, M. J.
    Bolokang, A. S.
    Kebede, M. A.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2021, 95
  • [29] Atomic potential energy uncertainty in machine-learning interatomic potentials and thermal transport in solids with atomic diffusion
    Zhu, Yifan
    Dong, Erting
    Yang, Hongliang
    Xi, Lili
    Yang, Jiong
    Zhang, Wenqing
    PHYSICAL REVIEW B, 2023, 108 (01)
  • [30] PHONONS IN A W-MO(001) SUPERLATTICE
    BRITOORTA, RA
    VELASCO, VR
    GARCIAMOLINER, F
    PHYSICAL REVIEW B, 1988, 38 (14): : 9631 - 9637