Machine-learning interatomic potential for W-Mo alloys

被引:17
作者
Nikoulis, Giorgos [1 ,2 ]
Byggmastar, Jesper [2 ]
Kioseoglou, Joseph [1 ]
Nordlund, Kai [2 ]
Djurabekova, Flyura [2 ,3 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece
[2] Univ Helsinki, Dept Phys, POB 43, FI-00014 Helsinki, Finland
[3] Helsinki Inst Phys, Helsinki, Finland
基金
欧盟地平线“2020”;
关键词
interatomic potential; machine learning; tungsten; molybdenum; alloys; THRESHOLD DISPLACEMENT ENERGIES; MOLECULAR-DYNAMICS; METALS;
D O I
10.1088/1361-648X/ac03d1
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, we develop a machine-learning interatomic potential for WxMo1-x random alloys. The potential is trained using the Gaussian approximation potential framework and density functional theory data produced by the Vienna ab initio simulation package. The potential focuses on properties such as elastic properties, melting, and point defects for the whole range of WxMo1-x compositions. Moreover, we use all-electron density functional theory data to fit an adjusted Ziegler-Biersack-Littmarck potential for the short-range repulsive interaction. We use the potential to investigate the effect of alloying on the threshold displacement energies and find a significant dependence on the local chemical environment and element of the primary recoiling atom.
引用
收藏
页数:11
相关论文
共 45 条
[1]   AN IMPROVED N-BODY SEMIEMPIRICAL MODEL FOR BODY-CENTERED CUBIC TRANSITION-METALS [J].
ACKLAND, GJ ;
THETFORD, R .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1987, 56 (01) :15-30
[2]   Gaussian approximation potentials: A brief tutorial introduction [J].
Bartok, Albert P. ;
Csanyi, Gabor .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1051-1057
[3]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[4]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[5]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)
[6]   Refractory metal intermetallic in-situ composites for aircraft engines [J].
Bewlay, BP ;
Lewandowksi, JJ ;
Jackson, MR .
JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 1997, 49 (08) :44-+
[7]   NEAR-THRESHOLD DISPLACEMENTS IN TANTALUM SINGLE-CRYSTALS [J].
BIGET, M ;
MAURY, F ;
VAJDA, P ;
LUCASSON, A ;
LUCASSON, P .
PHYSICAL REVIEW B, 1979, 19 (02) :820-830
[8]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[9]   Gaussian approximation potentials for body-centered-cubic transition metals [J].
Byggmastar, J. ;
Nordlund, K. ;
Djurabekova, F. .
PHYSICAL REVIEW MATERIALS, 2020, 4 (09)
[10]   Machine-learning interatomic potential for radiation damage and defects in tungsten [J].
Byggmastar, J. ;
Hamedani, A. ;
Nordlund, K. ;
Djurabekova, F. .
PHYSICAL REVIEW B, 2019, 100 (14)