Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique

被引:54
作者
Khot, S [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
来源
45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS | 2004年
关键词
D O I
10.1109/FOCS.2004.59
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Assuming that NP not subset of or equal to boolean AND(epsilon)>0 BPTIME(2(nepsilon)), we show that Graph Min-Bisection, Densest Subgraph and Bipartite Clique have no PTA,S. We give a reduction from the Minimum Distance Of Code Problem (MDC). Starting with an instance of MDC, we build a Quasi-random PCP that suffices to prove the desired inapproximability results. In a Quasi-random PCP the query pattern of the verifier looks random in some precise sense. Among the several new techniques introduced, we give a way of certifying that a given polynomial belongs to a given subspace of polynomials. As is important for our purpose, the certificate itself happens to be another polynomial and it can be checked by reading a constant number of its values.
引用
收藏
页码:136 / 145
页数:10
相关论文
共 19 条
[1]  
ALEKHNOVICH M, 2003, P 44 IEEE S FDN COMP
[2]   DERANDOMIZED GRAPH PRODUCTS [J].
ALON, N ;
FEIGE, U ;
WIGDERSON, A ;
ZUCKERMAN, D .
COMPUTATIONAL COMPLEXITY, 1995, 5 (01) :60-75
[3]   Proof verification and the hardness of approximation problems [J].
Arora, S ;
Lund, C ;
Motwani, R ;
Sudan, M ;
Szegedy, M .
JOURNAL OF THE ACM, 1998, 45 (03) :501-555
[4]   Probabilistic checking of proofs: A new characterization of NP [J].
Arora, S ;
Safra, S .
JOURNAL OF THE ACM, 1998, 45 (01) :70-122
[5]  
ARORA S, 1997, P 29 ACM S THEOR COM
[6]   Free bits, PCPs, and nonapproximability - Towards tight results [J].
Bellare, M ;
Goldreich, O ;
Sudan, M .
SIAM JOURNAL ON COMPUTING, 1998, 27 (03) :804-915
[7]  
BENSASSON E, 2004, P 36 ACM S THEOR COM
[8]  
DUMER I, 1999, P 40 IEEE S FDN COMP
[9]   Interactive proofs and the hardness of approximating cliques [J].
Feige, U ;
Goldwasser, S ;
Lovasz, L ;
Safra, S ;
Szegedy, M .
JOURNAL OF THE ACM, 1996, 43 (02) :268-292
[10]  
Feige U, 2000, ANN IEEE SYMP FOUND, P105