Asymptotic Behavior for Petrovsky Equation with Localized Damping

被引:9
作者
Han, Xiaosen [1 ,2 ]
Wang, Mingxin [3 ]
机构
[1] Henan Univ, Coll Math & Informat Sci, Kaifeng 475001, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210018, Peoples R China
[3] Harbin Inst Technol, Ctr Sci Res, Harbin 150080, Peoples R China
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
Petrovsky equation; Energy decay rate; Localized damping; ENERGY DECAY-RATES; WAVE-EQUATION; INTEGRAL-INEQUALITIES; UNIFORM DECAY; EXISTENCE; SYSTEM;
D O I
10.1007/s10440-009-9493-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate asymptotic behavior for the solution of the Petrovsky equation with locally distributed damping. Without growth condition on the damping at the origin, we extend the energy decay result in Martinez (Rev. Math. Complut. Madr. 12(1):251-283, 1999) for the single wave equation to the Petrovsky equation. The explicit energy decay rate is established by using piecewise multiplier techniques and weighted nonlinear integral inequalities.
引用
收藏
页码:1057 / 1076
页数:20
相关论文
共 30 条