Fatty acid composition of the heterotrophic nanoflagellate Paraphysomonas sp.: influence of diet and de novo biosynthesis

被引:18
作者
Bec, Alexandre [1 ,2 ,3 ]
Martin-Creuzburg, Dominik [3 ]
Von Elert, Eric [3 ,4 ]
机构
[1] Univ Clermont Ferrand, Lab Microorganismes Genome & Environm, F-63000 Clermont Ferrand, France
[2] CNRS, UMR 6023, LMGE, F-63177 Aubiere, France
[3] Univ Konstanz, Limnol Inst, D-78464 Constance, Germany
[4] Univ Cologne, Inst Zool, D-50674 Cologne, Germany
来源
AQUATIC BIOLOGY | 2010年 / 9卷 / 02期
关键词
Heterotrophic protist; Fatty acids; Picoplankton; Trophic upgrading; COPEPOD ACARTIA-TONSA; ACANTHAMOEBA-CASTELLANII; PROTOZOAN PARASITE; PERKINSUS-MARINUS; DAPHNIA-GALEATA; FOOD QUALITY; PROTISTS; GROWTH; TEMPERATURE; FLAGELLATE;
D O I
10.3354/ab00244
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
We compared the relative importance of dietary factors versus de novo synthesis in determining the polyunsaturated fatty acid (PUFA) composition of the heterotrophic nanoflagellate Paraphysomonas sp. The flagellate was fed with different mutants of the picocyanobacterial strain Synechocystis PCC6803, which differ in their capability to synthesize specific PUFAs. The desA, desB, and desD genes of Synechocystis PCC6803 encode lipid desaturases at the Delta 12, Delta 15, and Delta 6 positions of 18C fatty acids (FAs), respectively. Thus, the use of desA(-), desB(-), desD(-), and desA(-)/des D(-) mutants of Synechocystis PCC6803 as food sources permitted us to provide the heterotrophic flagellate with decreasing levels of unsaturated FAs. In each treatment, Paraphysomonas sp. exhibited the same FA composition pattern, i.e. high levels of 16:0 and 18:1, and significant amounts of 18C PUFAs and long-chain PUFAs such as 20:4(n-6), 20:5(n-3), and 22:6(n-3), which indicated that Paraphysomonas sp. is capable of synthesizing these PUFAs de novo. Results also showed that dietary 18C PUFAs seem to be preferentially accumulated in Paraphysomonas sp. lipids. This demonstrates that heterotrophic protists could play a key role in transferring essential compounds from primary producers to metazoan consumers.
引用
收藏
页码:107 / 112
页数:6
相关论文
共 43 条
  • [11] A biochemical explanation for the success of mixotrophy in the flagellate Ochromonas sp.
    Boeechat, Iola G.
    Weithoff, Guntram
    Krueger, Angela
    Guecker, Bjoern
    Adrian, Rita
    [J]. LIMNOLOGY AND OCEANOGRAPHY, 2007, 52 (04) : 1624 - 1632
  • [12] Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids
    Breteler, WCMK
    Schogt, N
    Baas, M
    Schouten, S
    Kraay, GW
    [J]. MARINE BIOLOGY, 1999, 135 (01) : 191 - 198
  • [13] Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa:: relationship with prey fatty acid composition
    Broglio, E
    Jónasdóttir, SH
    Calbet, A
    Jakobsen, HH
    Saiz, E
    [J]. AQUATIC MICROBIAL ECOLOGY, 2003, 31 (03) : 267 - 278
  • [14] Pfiesteria piscicida and other Pfiesteria-like dinoflagellates: Behavior, impacts, and environmental controls
    Burkholder, JM
    Glasgow, HB
    [J]. LIMNOLOGY AND OCEANOGRAPHY, 1997, 42 (05) : 1052 - 1075
  • [15] Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems
    Calbet, A
    Landry, MR
    [J]. LIMNOLOGY AND OCEANOGRAPHY, 2004, 49 (01) : 51 - 57
  • [16] De novo arachidonic acid synthesis in Perkinsus marinus, a protozoan parasite of the eastern oyster Crassostrea virginica
    Chu, FLE
    Lund, E
    Soudant, P
    Harvey, E
    [J]. MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2002, 119 (02) : 179 - 190
  • [17] Quantitative significance of n-3 essential fatty acid contribution by heterotrophic protists in marine pelagic food webs
    Chu, Fu-Lin E.
    Lund, Eric D.
    Podbesek, Jennifer A.
    [J]. MARINE ECOLOGY PROGRESS SERIES, 2008, 354 : 85 - 95
  • [18] Species-specific differences in long-chain n-3 essential fatty acid, sterol, and steroidal ketone production in six heterotrophic protist species
    Chu, Fu-Lin E.
    Lund, Eric D.
    Littreal, Paul R.
    Ruck, Kate E.
    Harvey, Ellen
    [J]. AQUATIC BIOLOGY, 2009, 6 (1-3): : 159 - 172
  • [19] CONNER RL, 1982, J PROTOZOOL, V29, P105, DOI 10.1111/j.1550-7408.1982.tb02889.x
  • [20] Desvilettes C, 2009, LIPIDS IN AQUATIC ECOSYSTEMS, P25, DOI 10.1007/978-0-387-89366-2_2