Defining transcribed regions using RNA-seq

被引:52
|
作者
Wilhelm, Brian T. [2 ]
Marguerat, Samuel [1 ,3 ]
Goodhead, Ian [4 ]
Bahler, Jurg [1 ,3 ]
机构
[1] UCL, Dept Genet Evolut & Environm, London, England
[2] Univ Montreal, IRIC, Montreal, PQ, Canada
[3] UCL, Inst Canc, London, England
[4] Univ Liverpool, Unit Funct & Comparat Genom, Sch Biol Sci, Liverpool L69 3BX, Merseyside, England
关键词
EUKARYOTIC TRANSCRIPTOME; ALIGNMENT; DISCOVERY;
D O I
10.1038/nprot.2009.229
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Next-generation sequencing technologies are revolutionizing genomics research. It is now possible to generate gigabase pairs of DNA sequence within a week without time-consuming cloning or massive infrastructure. this technology has recently been applied to the development of 'RNA-seq' techniques for sequencing cDNA from various organisms, with the goal of characterizing entire transcriptomes. these methods provide unprecedented resolution and depth of data, enabling simultaneous quantification of gene expression, discovery of novel transcripts and exons, and measurement of splicing efficiency. We present here a validated protocol for nonstrand-specific transcriptome sequencing via RNA-seq, describing the library preparation process and outlining the bioinformatic analysis procedure. While sample preparation and sequencing take a fairly short period of time (1-2 weeks), the downstream analysis is by far the most challenging and time-consuming aspect and can take weeks to months, depending on the experimental objectives.
引用
收藏
页码:255 / 266
页数:12
相关论文
共 50 条
  • [31] Computational analysis of bacterial RNA-Seq data
    McClure, Ryan
    Balasubramanian, Divya
    Sun, Yan
    Bobrovskyy, Maksym
    Sumby, Paul
    Genco, Caroline A.
    Vanderpool, Carin K.
    Tjaden, Brian
    NUCLEIC ACIDS RESEARCH, 2013, 41 (14) : e140
  • [32] RseqFlow: workflows for RNA-Seq data analysis
    Wang, Ying
    Mehta, Gaurang
    Mayani, Rajiv
    Lu, Jingxi
    Souaiaia, Tade
    Chen, Yangho
    Clark, Andrew
    Yoon, Hee Jae
    Wan, Lin
    Evgrafov, Oleg V.
    Knowles, James A.
    Deelman, Ewa
    Chen, Ting
    BIOINFORMATICS, 2011, 27 (18) : 2598 - 2600
  • [33] TopHat: discovering splice junctions with RNA-Seq
    Trapnell, Cole
    Pachter, Lior
    Salzberg, Steven L.
    BIOINFORMATICS, 2009, 25 (09) : 1105 - 1111
  • [34] Assessment of transcript reconstruction methods for RNA-seq
    Steijger, Tamara
    Abril, Josep F.
    Engstrom, Par G.
    Kokocinski, Felix
    Hubbard, Tim J.
    Guigo, Roderic
    Harrow, Jennifer
    Bertone, Paul
    NATURE METHODS, 2013, 10 (12) : 1177 - +
  • [35] Revealing of Mycobacterium marinum Transcriptome by RNA-seq
    Wang, Sen
    Dong, Xinran
    Zhu, Yongqiang
    Wang, Chuan
    Sun, Gang
    Luo, Tao
    Tian, Weidong
    Zheng, Huajun
    Gao, Qian
    PLOS ONE, 2013, 8 (09):
  • [36] Scaffolding a Caenorhabditis nematode genome with RNA-seq
    Mortazavi, Ali
    Schwarz, Erich M.
    Williams, Brian
    Schaeffer, Lorian
    Antoshechkin, Igor
    Wold, Barbara J.
    Sternberg, Paul W.
    GENOME RESEARCH, 2010, 20 (12) : 1740 - 1747
  • [37] ARH-seq: identification of differential splicing in RNA-seq data
    Rasche, Axel
    Lienhard, Matthias
    Yaspo, Marie-Laure
    Lehrach, Hans
    Herwig, Ralf
    NUCLEIC ACIDS RESEARCH, 2014, 42 (14) : e110
  • [38] Statistical Issues in the Analysis of ChIP-Seq and RNA-Seq Data
    Ghosh, Debashis
    Qin, Zhaohui S.
    GENES, 2010, 1 (02) : 317 - 334
  • [39] STAR: ultrafast universal RNA-seq aligner
    Dobin, Alexander
    Davis, Carrie A.
    Schlesinger, Felix
    Drenkow, Jorg
    Zaleski, Chris
    Jha, Sonali
    Batut, Philippe
    Chaisson, Mark
    Gingeras, Thomas R.
    BIOINFORMATICS, 2013, 29 (01) : 15 - 21
  • [40] Detection and benchmarking of somatic mutations in cancer genomes using RNA-seq data
    Coudray, Alexandre
    Battenhouse, Anna M.
    Bucher, Philipp
    Iyer, Vishwanath R.
    PEERJ, 2018, 6