Defining transcribed regions using RNA-seq

被引:52
|
作者
Wilhelm, Brian T. [2 ]
Marguerat, Samuel [1 ,3 ]
Goodhead, Ian [4 ]
Bahler, Jurg [1 ,3 ]
机构
[1] UCL, Dept Genet Evolut & Environm, London, England
[2] Univ Montreal, IRIC, Montreal, PQ, Canada
[3] UCL, Inst Canc, London, England
[4] Univ Liverpool, Unit Funct & Comparat Genom, Sch Biol Sci, Liverpool L69 3BX, Merseyside, England
关键词
EUKARYOTIC TRANSCRIPTOME; ALIGNMENT; DISCOVERY;
D O I
10.1038/nprot.2009.229
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Next-generation sequencing technologies are revolutionizing genomics research. It is now possible to generate gigabase pairs of DNA sequence within a week without time-consuming cloning or massive infrastructure. this technology has recently been applied to the development of 'RNA-seq' techniques for sequencing cDNA from various organisms, with the goal of characterizing entire transcriptomes. these methods provide unprecedented resolution and depth of data, enabling simultaneous quantification of gene expression, discovery of novel transcripts and exons, and measurement of splicing efficiency. We present here a validated protocol for nonstrand-specific transcriptome sequencing via RNA-seq, describing the library preparation process and outlining the bioinformatic analysis procedure. While sample preparation and sequencing take a fairly short period of time (1-2 weeks), the downstream analysis is by far the most challenging and time-consuming aspect and can take weeks to months, depending on the experimental objectives.
引用
收藏
页码:255 / 266
页数:12
相关论文
共 50 条
  • [21] RNA-seq: technical variability and sampling
    McIntyre, Lauren M.
    Lopiano, Kenneth K.
    Morse, Alison M.
    Amin, Victor
    Oberg, Ann L.
    Young, Linda J.
    Nuzhdin, Sergey V.
    BMC GENOMICS, 2011, 12
  • [22] SQUID: transcriptomic structural variation detection from RNA-seq
    Ma, Cong
    Shao, Mingfu
    Kingsford, Carl
    GENOME BIOLOGY, 2018, 19
  • [23] Exploring the Schistosoma mansoni adult male transcriptome using RNA-seq
    Almeida, Giulliana Tessarin
    Amaral, Murilo Sena
    Ferrarezi Beckedorff, Felipe Cesar
    Kitajima, Joao Paulo
    DeMarco, Ricardo
    Verjovski-Almeida, Sergio
    EXPERIMENTAL PARASITOLOGY, 2012, 132 (01) : 22 - 31
  • [24] Differential gene expression analysis using coexpression and RNA-Seq data
    Yang, Ei-Wen
    Girke, Thomas
    Jiang, Tao
    BIOINFORMATICS, 2013, 29 (17) : 2153 - 2161
  • [25] RNA-Seq Data Analysis using Nonparametric Gaussian Process Models
    Thanh Nguyen
    Nahavandi, Saeid
    Creighton, Douglas
    Khosravi, Abbas
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 5087 - 5093
  • [26] Transcriptome Profiling of Rust Resistance in Switchgrass Using RNA-Seq Analysis
    Serba, Desalegn D.
    Uppalapati, Srinivasa Rao
    Mukherjee, Shreyartha
    Krom, Nick
    Tang, Yuhong
    Mysore, Kirankumar S.
    Saha, Malay C.
    PLANT GENOME, 2015, 8 (02)
  • [27] TrueSight: a new algorithm for splice junction detection using RNA-seq
    Li, Yang
    Li-Byarlay, Hongmei
    Burns, Paul
    Borodovsky, Mark
    Robinson, Gene E.
    Ma, Jian
    NUCLEIC ACIDS RESEARCH, 2013, 41 (04) : e51
  • [28] Grape RNA-Seq analysis pipeline environment
    Knowles, David G.
    Roeder, Maik
    Merkel, Angelika
    Guigo, Roderic
    BIOINFORMATICS, 2013, 29 (05) : 614 - 621
  • [29] SeqOthello: querying RNA-seq experiments at scale
    Yu, Ye
    Liu, Jinpeng
    Liu, Xinan
    Zhang, Yi
    Magner, Eamonn
    Lehnert, Erik
    Qian, Chen
    Liu, Jinze
    GENOME BIOLOGY, 2018, 19
  • [30] Mining RNA-Seq Data for Infections and Contaminations
    Bonfert, Thomas
    Csaba, Gergely
    Zimmer, Ralf
    Friedel, Caroline C.
    PLOS ONE, 2013, 8 (09):