Defining transcribed regions using RNA-seq

被引:52
|
作者
Wilhelm, Brian T. [2 ]
Marguerat, Samuel [1 ,3 ]
Goodhead, Ian [4 ]
Bahler, Jurg [1 ,3 ]
机构
[1] UCL, Dept Genet Evolut & Environm, London, England
[2] Univ Montreal, IRIC, Montreal, PQ, Canada
[3] UCL, Inst Canc, London, England
[4] Univ Liverpool, Unit Funct & Comparat Genom, Sch Biol Sci, Liverpool L69 3BX, Merseyside, England
关键词
EUKARYOTIC TRANSCRIPTOME; ALIGNMENT; DISCOVERY;
D O I
10.1038/nprot.2009.229
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Next-generation sequencing technologies are revolutionizing genomics research. It is now possible to generate gigabase pairs of DNA sequence within a week without time-consuming cloning or massive infrastructure. this technology has recently been applied to the development of 'RNA-seq' techniques for sequencing cDNA from various organisms, with the goal of characterizing entire transcriptomes. these methods provide unprecedented resolution and depth of data, enabling simultaneous quantification of gene expression, discovery of novel transcripts and exons, and measurement of splicing efficiency. We present here a validated protocol for nonstrand-specific transcriptome sequencing via RNA-seq, describing the library preparation process and outlining the bioinformatic analysis procedure. While sample preparation and sequencing take a fairly short period of time (1-2 weeks), the downstream analysis is by far the most challenging and time-consuming aspect and can take weeks to months, depending on the experimental objectives.
引用
收藏
页码:255 / 266
页数:12
相关论文
共 50 条
  • [11] Improving the Annotation of Arabidopsis lyrata Using RNA-Seq Data
    Rawat, Vimal
    Abdelsamad, Ahmed
    Pietzenuk, Bjoern
    Seymour, Danelle K.
    Koenig, Daniel
    Weigel, Detlef
    Pecinka, Ales
    Schneeberger, Korbinian
    PLOS ONE, 2015, 10 (09):
  • [12] Reproducible RNA-seq analysis using recount2
    Collado-Torres, Leonardo
    Nellore, Abhinav
    Kammers, Kai
    Ellis, Shannon E.
    Taub, Margaret A.
    Hansen, Kasper D.
    Jaffe, Andrew E.
    Langmead, Ben
    Leek, Jeffrey T.
    NATURE BIOTECHNOLOGY, 2017, 35 (04) : 319 - 321
  • [13] CRAC: an integrated approach to the analysis of RNA-seq reads
    Philippe, Nicolas
    Salson, Mikael
    Commes, Therese
    Rivals, Eric
    GENOME BIOLOGY, 2013, 14 (03):
  • [14] Towards reliable isoform quantification using RNA-SEQ data
    Howard, Brian E.
    Heber, Steffen
    BMC BIOINFORMATICS, 2010, 11
  • [15] RNA-seq: from technology to biology
    Marguerat, Samuel
    Baehler, Juerg
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2010, 67 (04) : 569 - 579
  • [16] RNA-seq assembly - are we there yet?
    Schliesky, Simon
    Gowik, Udo
    Weber, Andreas P. M.
    Braeutigam, Andrea
    FRONTIERS IN PLANT SCIENCE, 2012, 3
  • [17] A benchmark for RNA-seq quantification pipelines
    Teng, Mingxiang
    Love, Michael I.
    Davis, Carrie A.
    Djebali, Sarah
    Dobin, Alexander
    Graveley, Brenton R.
    Li, Sheng
    Mason, Christopher E.
    Olson, Sara
    Pervouchine, Dmitri
    Sloan, Cricket A.
    Wei, Xintao
    Zhan, Lijun
    Irizarry, Rafael A.
    GENOME BIOLOGY, 2016, 17
  • [18] Evaluation and application of RNA-Seq by MinION
    Seki, Masahide
    Katsumata, Eri
    Suzuki, Ayako
    Sereewattanawoot, Sarun
    Sakamoto, Yoshitaka
    Mizushima-Sugano, Junko
    Sugano, Sumio
    Kohno, Takashi
    Frith, Martin C.
    Tsuchihara, Katsuya
    Suzuki, Yutaka
    DNA RESEARCH, 2019, 26 (01) : 55 - 65
  • [19] Event Analysis: Using Transcript Events To Improve Estimates of Abundance in RNA-seq Data
    Newman, Jeremy R. B.
    Concannon, Patrick
    Tardaguila, Manuel
    Conesa, Ana
    McIntyre, Lauren M.
    G3-GENES GENOMES GENETICS, 2018, 8 (09): : 2923 - 2940
  • [20] RNA-Seq: a revolutionary tool for transcriptomics
    Wang, Zhong
    Gerstein, Mark
    Snyder, Michael
    NATURE REVIEWS GENETICS, 2009, 10 (01) : 57 - 63