Defining transcribed regions using RNA-seq

被引:52
|
作者
Wilhelm, Brian T. [2 ]
Marguerat, Samuel [1 ,3 ]
Goodhead, Ian [4 ]
Bahler, Jurg [1 ,3 ]
机构
[1] UCL, Dept Genet Evolut & Environm, London, England
[2] Univ Montreal, IRIC, Montreal, PQ, Canada
[3] UCL, Inst Canc, London, England
[4] Univ Liverpool, Unit Funct & Comparat Genom, Sch Biol Sci, Liverpool L69 3BX, Merseyside, England
关键词
EUKARYOTIC TRANSCRIPTOME; ALIGNMENT; DISCOVERY;
D O I
10.1038/nprot.2009.229
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Next-generation sequencing technologies are revolutionizing genomics research. It is now possible to generate gigabase pairs of DNA sequence within a week without time-consuming cloning or massive infrastructure. this technology has recently been applied to the development of 'RNA-seq' techniques for sequencing cDNA from various organisms, with the goal of characterizing entire transcriptomes. these methods provide unprecedented resolution and depth of data, enabling simultaneous quantification of gene expression, discovery of novel transcripts and exons, and measurement of splicing efficiency. We present here a validated protocol for nonstrand-specific transcriptome sequencing via RNA-seq, describing the library preparation process and outlining the bioinformatic analysis procedure. While sample preparation and sequencing take a fairly short period of time (1-2 weeks), the downstream analysis is by far the most challenging and time-consuming aspect and can take weeks to months, depending on the experimental objectives.
引用
收藏
页码:255 / 266
页数:12
相关论文
共 50 条
  • [1] Defining the transcriptomic landscape of Candida glabrata by RNA-Seq
    Linde, Joerg
    Duggan, Seana
    Weber, Michael
    Horn, Fabian
    Sieber, Patricia
    Hellwig, Daniela
    Riege, Konstantin
    Marz, Manja
    Martin, Ronny
    Guthke, Reinhard
    Kurzai, Oliver
    NUCLEIC ACIDS RESEARCH, 2015, 43 (03) : 1392 - 1406
  • [2] Uncovering the Complexity of Transcriptomes with RNA-Seq
    Costa, Valerio
    Angelini, Claudia
    De Feis, Italia
    Ciccodicola, Alfredo
    JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2010,
  • [3] Characterizing and annotating the genome using RNA-seq data
    Chen, Geng
    Shi, Tieliu
    Shi, Leming
    SCIENCE CHINA-LIFE SCIENCES, 2017, 60 (02) : 116 - 125
  • [4] RNA-Seq analysis in MeV
    Howe, Eleanor A.
    Sinha, Raktim
    Schlauch, Daniel
    Quackenbush, John
    BIOINFORMATICS, 2011, 27 (22) : 3209 - 3210
  • [5] VIPER: Visualization Pipeline for RNA-seq, a Snakemake workflow for efficient and complete RNA-seq analysis
    Cornwell, MacIntosh
    Vangala, Mahesh
    Taing, Len
    Herbert, Zachary
    Koester, Johannes
    Li, Bo
    Sun, Hanfei
    Li, Taiwen
    Zhang, Jian
    Qiu, Xintao
    Pun, Matthew
    Jeselsohn, Rinath
    Brown, Myles
    Liu, X. Shirley
    Long, Henry W.
    BMC BIOINFORMATICS, 2018, 19
  • [6] RNA-Seq: revelation of the messengers
    Van Verk, Marcel C.
    Hickman, Richard
    Pieterse, Corne M. J.
    Van Wees, Saskia C. M.
    TRENDS IN PLANT SCIENCE, 2013, 18 (04) : 175 - 179
  • [7] De Novo Assembly of the Perennial Ryegrass Transcriptome Using an RNA-Seq Strategy
    Farrell, Jacqueline D.
    Byrne, Stephen
    Paina, Cristiana
    Asp, Torben
    PLOS ONE, 2014, 9 (08):
  • [8] Computation for ChIP-seq and RNA-seq studies
    Pepke, Shirley
    Wold, Barbara
    Mortazavi, Ali
    NATURE METHODS, 2009, 6 (11) : S22 - S32
  • [9] New insights into the Plasmodium vivax transcriptome using RNA-Seq
    Zhu, Lei
    Mok, Sachel
    Imwong, Mallika
    Jaidee, Anchalee
    Russell, Bruce
    Nosten, Francois
    Day, Nicholas P.
    White, Nicholas J.
    Preiser, Peter R.
    Bozdech, Zbynek
    SCIENTIFIC REPORTS, 2016, 6
  • [10] Computational methods for transcriptome annotation and quantification using RNA-seq
    Garber, Manuel
    Grabherr, Manfred G.
    Guttman, Mitchell
    Trapnell, Cole
    NATURE METHODS, 2011, 8 (06) : 469 - 477