Deep learning based on hematoxylin-eosin staining outperforms immunohistochemistry in predicting molecular subtypes of gastric adenocarcinoma

被引:20
作者
Flinner, Nadine [1 ,2 ,3 ,4 ]
Gretser, Steffen [1 ]
Quaas, Alexander [5 ]
Bankov, Katrin [1 ]
Stoll, Alexander [1 ]
Heckmann, Lara E. [1 ]
Mayer, Robin S. [1 ]
Doering, Claudia [1 ]
Demes, Melanie C. [1 ]
Buettner, Reinhard [5 ]
Rueschoff, Josef [6 ]
Wild, Peter J. [1 ,2 ,3 ,4 ,7 ]
机构
[1] Univ Hosp Frankfurt, Dr Senckenberg Inst Pathol, Theodor Stern Kai 7, D-60596 Frankfurt, Germany
[2] Frankfurt Inst Adv Studies FIAS, Frankfurt, Germany
[3] Frankfurt Canc Inst FCI, Frankfurt, Germany
[4] Univ Canc Ctr UCT, Frankfurt, Germany
[5] Univ Hosp Cologne, Inst Pathol, Cologne, Germany
[6] Targos Mol Pathol GmbH, Kassel, Germany
[7] Univ Hosp Frankfurt MVZ GmbH, Wildlab, Frankfurt, Germany
关键词
stomach neoplasms; deep learning; molecular typing; molecular diagnostic techniques; histology; computational pathology; ensemble cNN; EXPRESSION-BASED CLASSIFICATION; INTRATUMORAL HETEROGENEITY; MICROSATELLITE INSTABILITY; CANCER; PROTEIN; DIFFUSE;
D O I
10.1002/path.5879
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In gastric cancer (GC), there are four molecular subclasses that indicate whether patients respond to chemotherapy or immunotherapy, according to the TCGA. In clinical practice, however, not every patient undergoes molecular testing. Many laboratories have used well-implemented in situ techniques (IHC and EBER-ISH) to determine the subclasses in their cohorts. Although multiple stains are used, we show that a staining approach is unable to correctly discriminate all subclasses. As an alternative, we trained an ensemble convolutional neuronal network using bagging that can predict the molecular subclass directly from hematoxylin-eosin histology. We also identified patients with predicted intra-tumoral heterogeneity or with features from multiple subclasses, which challenges the postulated TCGA-based decision tree for GC subtyping. In the future, deep learning may enable targeted testing for molecular subtypes and targeted therapy for a broader group of GC patients. (c) 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
引用
收藏
页码:218 / 226
页数:9
相关论文
共 45 条
[1]   High-throughput Protein and mRNA Expression-based Classification of Gastric Cancers Can Identify Clinically Distinct Subtypes, Concordant With Recent Molecular Classifications [J].
Ahn, Sangjeong ;
Lee, So-Jeong ;
Kim, Yonugkeum ;
Kim, Ahrong ;
Shin, Nari ;
Choi, Kyung Un ;
Lee, Chang-Hun ;
Huh, Gi Yeong ;
Kim, Kyong-Mee ;
Setia, Namrata ;
Lauwers, Gregory Y. ;
Park, Do Youn .
AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 2017, 41 (01) :106-115
[2]   Intratumoral heterogeneity in gastric cancer: a new challenge to face [J].
Alsina, M. ;
Gullo, I. ;
Carneiro, F. .
ANNALS OF ONCOLOGY, 2017, 28 (05) :912-913
[3]   Automated Gleason grading of prostate cancer tissue microarrays via deep learning [J].
Arvaniti, Eirini ;
Fricker, Kim S. ;
Moret, Michael ;
Rupp, Niels ;
Hermanns, Thomas ;
Fankhauser, Christian ;
Wey, Norbert ;
Wild, Peter J. ;
Ruschoff, Jan H. ;
Claassen, Manfred .
SCIENTIFIC REPORTS, 2018, 8
[4]   Inactivation of the E-cadherin gene in sporadic diffuse-type gastric cancer [J].
Ascaño, JJ ;
Frierson, H ;
Moskaluk, CA ;
Harper, JC ;
Roviello, F ;
Jackson, CE ;
El-Rifai, W ;
Vindigni, C ;
Tosi, P ;
Powell, SM .
MODERN PATHOLOGY, 2001, 14 (10) :942-949
[5]   Usefulness of Immunohistochemistry for Microsatellite Instability Screening in Gastric Cancer [J].
Bae, Yoon Sung ;
Kim, Hoguen ;
Noh, Sung Hoon ;
Kim, Hyunki .
GUT AND LIVER, 2015, 9 (05) :629-635
[6]   QuPath: Open source software for digital pathology image analysis [J].
Bankhead, Peter ;
Loughrey, Maurice B. ;
Fernandez, Jose A. ;
Dombrowski, Yvonne ;
Mcart, Darragh G. ;
Dunne, Philip D. ;
McQuaid, Stephen ;
Gray, Ronan T. ;
Murray, Liam J. ;
Coleman, Helen G. ;
James, Jacqueline A. ;
Salto-Tellez, Manuel ;
Hamilton, Peter W. .
SCIENTIFIC REPORTS, 2017, 7
[7]   Comprehensive molecular characterization of gastric adenocarcinoma [J].
Bass, Adam J. ;
Thorsson, Vesteinn ;
Shmulevich, Ilya ;
Reynolds, Sheila M. ;
Miller, Michael ;
Bernard, Brady ;
Hinoue, Toshinori ;
Laird, Peter W. ;
Curtis, Christina ;
Shen, Hui ;
Weisenberger, Daniel J. ;
Schultz, Nikolaus ;
Shen, Ronglai ;
Weinhold, Nils ;
Keiser, David P. ;
Bowlby, Reanne ;
Sipahimalani, Payal ;
Cherniack, Andrew D. ;
Getz, Gad ;
Liu, Yingchun ;
Noble, Michael S. ;
Pedamallu, Chandra ;
Sougnez, Carrie ;
Taylor-Weiner, Amaro ;
Akbani, Rehan ;
Lee, Ju-Seog ;
Liu, Wenbin ;
Mills, Gordon B. ;
Yang, Da ;
Zhang, Wei ;
Pantazi, Angeliki ;
Parfenov, Michael ;
Gulley, Margaret ;
Piazuelo, M. Blanca ;
Schneider, Barbara G. ;
Kim, Jihun ;
Boussioutas, Alex ;
Sheth, Margi ;
Demchok, John A. ;
Rabkin, Charles S. ;
Willis, Joseph E. ;
Ng, Sam ;
Garman, Katherine ;
Beer, David G. ;
Pennathur, Arjun ;
Raphael, Benjamin J. ;
Wu, Hsin-Ta ;
Odze, Robert ;
Kim, Hark K. ;
Bowen, Jay .
NATURE, 2014, 513 (7517) :202-209
[8]   Epstein-Barr virus-associated gastric cancer reveals intratumoral heterogeneity of PIK3CA mutations [J].
Boger, C. ;
Kruger, S. ;
Behrens, H. M. ;
Bock, S. ;
Haag, J. ;
Kalthoff, H. ;
Rocken, C. .
ANNALS OF ONCOLOGY, 2017, 28 (05) :1005-1014
[9]   Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study [J].
Bulten, Wouter ;
Pinckaers, Hans ;
van Boven, Hester ;
Vink, Robert ;
de Bel, Thomas ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Hulsbergen-van de Kaa, Christina ;
Litjens, Geert .
LANCET ONCOLOGY, 2020, 21 (02) :233-241
[10]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+