Projective MDS Codes Over GF(27)

被引:1
作者
Al-Zangana, Emad Bakr Abdulkareem [1 ]
机构
[1] Mustansiriyah Univ, Coll Sci, Dept Math, Baghdad, Iraq
关键词
Conic; Finite field; Finite projective plane; Maximum distance separable codes;
D O I
10.21123/bsj.2021.18.2(Suppl.).1125
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
MDS code is a linear code that achieves equality in the Singleton bound, and projective MDS (PG-MDS) is MDS code with independents property of any two columns of its generator matrix. In this paper, elementary methods for modifying a PG-MDS code of dimensions 2, 3, as extending and lengthening, in order to find new incomplete PG-MDS codes have been used over GF(27). Also, two complete PG-MDS codes over GF(27) of length 16 and 28 have been found.
引用
收藏
页码:1125 / 1132
页数:8
相关论文
共 12 条
[1]  
Cardell SD, 2013, WIT T INFO COMM, V45, P58
[2]  
Emami M, 2015, IJMS, V10, P22
[3]  
Gonzalez-Sarabia M, 2016, DISCRETE MATH, V339, P821
[4]  
Grassl M., 2007, BOUNDS MINIMUM DISTA
[5]  
Halbawi W, 2016 IEEE INF THEOR, P409
[6]  
Heidarzadeh A, 2017, IEEE INT SYMP INFO, P11, DOI 10.1109/ISIT.2017.8006480
[7]   PROJECTIVE CODES MEETING THE GRIESMER BOUND [J].
HELLESETH, T .
DISCRETE MATHEMATICS, 1992, 106 :265-271
[8]  
Hirschfeld J. W. P., 1998, PROJECTIVE GEOMETRIE
[9]   Generalized Hamming Weights for Almost Affine Codes [J].
Johnsen, Trygve ;
Verdure, Hugues .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) :1941-1953
[10]  
MacWilliams F. J., 1977, Mathematical Studies