Precision Bayesian phase I-II dose-finding based on utilities tailored to prognostic subgroups

被引:19
作者
Lee, Juhee [1 ]
Thall, Peter F. [2 ]
Msaouel, Pavlos [3 ,4 ]
机构
[1] Univ Calif Santa Cruz, Dept Stat, 1156 High St Mail Stop SOE2, Santa Cruz, CA 95064 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Genitourinary Med Oncol, Houston, TX 77030 USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Translat Mol Pathol, Houston, TX 77030 USA
基金
美国国家科学基金会;
关键词
adaptive randomization; Bayesian phase I-II clinical trial design; clustering; dose finding; patient prognostic subgroups; COMPETING RISKS; MODEL;
D O I
10.1002/sim.9120
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A Bayesian phase I-II design is presented that optimizes the dose of a new agent within predefined prognostic subgroups. The design is motivated by a trial to evaluate targeted agents for treating metastatic clear cell renal carcinoma, where a prognostic risk score defined by clinical variables and biomarkers is well established. Two clinical outcomes are used for dose-finding, time-to-toxicity during a prespecified follow-up period, and efficacy characterized by ordinal disease status evaluated at the end of follow-up. A joint probability model is constructed for these outcomes as functions of dose and subgroup. The model performs adaptive clustering of adjacent subgroups having similar dose-outcome distributions to facilitate borrowing information across subgroups. To quantify toxicity-efficacy risk-benefit trade-offs that may differ between subgroups, the objective function is based on outcome utilities elicited separately for each subgroup. In the context of the renal cancer trial, a design is constructed and a simulation study is presented to evaluate the design's reliability, safety, and robustness, and to compare it to designs that either ignore subgroups or run a separate trial within each subgroup.
引用
收藏
页码:5199 / 5217
页数:19
相关论文
共 18 条
[1]  
[Anonymous], 2020, CLIN ADV HEMATOL ONC, V18, P204
[2]   Subgroup-specific dose finding in phase I clinical trials based on time to toxicity allowing adaptive subgroup combination [J].
Chapple, Andrew G. ;
Thall, Peter F. .
PHARMACEUTICAL STATISTICS, 2018, 17 (06) :734-749
[3]   Frailty-Based Competing Risks Model for Multivariate Survival Data [J].
Gorfine, Malka ;
Hsu, Li .
BIOMETRICS, 2011, 67 (02) :415-426
[4]   External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a population-based study [J].
Heng, Daniel Y. C. ;
Xie, Wanling ;
Regan, Meredith M. ;
Harshman, Lauren C. ;
Bjarnason, Georg A. ;
Vaishampayan, Ulka N. ;
Mackenzie, Mary ;
Wood, Lori ;
Donskov, Frede ;
Tan, Min-Han ;
Rha, Sun-Young ;
Agarwal, Neeraj ;
Kollmannsberger, Christian ;
Rini, Brian I. ;
Choueiri, Toni K. .
LANCET ONCOLOGY, 2013, 14 (02) :141-148
[5]   Shift models for dose-finding in partially ordered groups [J].
Horton, Bethany Jablonski ;
Wages, Nolan A. ;
Conaway, Mark R. .
CLINICAL TRIALS, 2019, 16 (01) :32-40
[6]   Design Considerations for Dose-Expansion Cohorts in Phase I Trials [J].
Iasonos, Alexia ;
O'Quigley, John .
JOURNAL OF CLINICAL ONCOLOGY, 2013, 31 (31) :4014-+
[7]   Triple-Negative Breast Cancer Role of Specific Chemotherapy Agents [J].
Isakoff, Steven J. .
CANCER JOURNAL, 2010, 16 (01) :53-61
[8]   Bayesian Dose-Finding in Two Treatment Cycles Based on the Joint Utility of Efficacy and Toxicity [J].
Lee, Juhee ;
Thall, Peter F. ;
Ji, Yuan ;
Mueller, Peter .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (510) :711-722
[9]  
Lin RT, 2021, BAYESIAN ANAL, V16, P179, DOI [10.1214/20-ba1205, 10.1214/20-BA1205]
[10]   Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial [J].
Motzer, Robert ;
Rini, Brian, I ;
McDermott, David F. ;
Frontera, Osvaldo Aren ;
Hammers, Hans J. ;
Carducci, Michael A. ;
Salman, Pamela ;
Escudier, Bernard ;
Beuselinck, Benoit ;
Amin, Asim ;
Porta, Camillo ;
George, Saby ;
Neiman, Victoria ;
Bracarda, Sergio ;
Tykodi, Scott S. ;
Barthelemy, Philippe ;
Leibowitz-Amit, Raya ;
Plimack, Elizabeth R. ;
Oosting, Sjoukje F. ;
Redman, Bruce ;
Melichar, Bohusiav ;
Powles, Thomas ;
Nathan, Paul ;
Oudard, Stephan ;
Pook, David ;
Choueiri, Toni K. ;
Donskov, Frede ;
Grimm, Marc-Oliver ;
Gurney, Howard ;
Heng, Daniel Y. C. ;
Kollmannsberger, Christian K. ;
Harrison, Michael R. ;
Tamita, Yoshihiko ;
Duran, Ignacio ;
Gruenwold, Viktor ;
McHenry, M. Brent ;
Mekan, Sabeen ;
Tannir, Nizar M. .
LANCET ONCOLOGY, 2019, 20 (10) :1370-1385