Monovalent permeability, rectification, and ionic block of store-operated calcium channels in Jurkat T lymphocytes

被引:79
作者
Kerschbaum, HH
Cahalan, MD [1 ]
机构
[1] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA
[2] Salzburg Univ, Inst Zool, Dept Anim Physiol, A-5020 Salzburg, Austria
关键词
calcium channel; CRAC channel; I-CRAC; ion selectivity; inward rectification;
D O I
10.1085/jgp.111.4.521
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
We used whole-cell recording to characterize ion permeation, rectification, and block of monovalent current through calcium release-activated calcium (CRAC) channels in Jurkat T lymphocytes. Under physiological conditions, CRAC channels exhibit a high degree of selectivity for Ca2+, but can be induced to carry a slowly declining Na curs rent when external divalent ions are reduced to micromolar levels. Using a series of organic cations as probes of var)ring size, we measured reversal potentials and calculated permeability ratios relative to Na+, P-X/P-Na, in order to estimate the diameter of the conducting pore. Ammonium (NH4+) exhibited the highest relative permeability (P-NH4/P-Na = 1.37). The largest permeant ion, tetramethylammonium with a diameter of 0.55 nm, had P-TMA/P-Na of 0.09. N-methyl-D-glucamine (0.50 x 0.64 x 1.20 nm) was not measurably permeant. In addition to carrying monovalent current, NH,+ reduced the slow decline of monovalent current ("inactivation") upon lowering [Ca2+](o). This kinetic effect of extracellular NH,+ can be accounted for by an increase in intracellular pH (pH(i)), since raising intracellular pH above 8 reduced the extent of inactivation. In addition, decreasing pH(i) reduced monovalent and divalent current amplitudes through CRAC channels with a pK(a) of 0.8. In several channel types, Mg2+ has been shown to produce rectification by a voltage-dependent block mechanism. Mg2+ removal from the pipette solution permitted large outward monovalent currents to flow through CRAC channels while also increasing the channel's relative Cs+ conductance and eliminating the inactivation of monovalent current. Boltzmann fits indicate that intracellular Mg2+ contributes to inward rectification by blocking in a voltage-dependent manner, with a z delta product of 1.88. Ca2+ block from the outside was also found to be voltage dependent with z delta of 1.62. These experiments indicate that the CRAC channel, like voltage-gated Ca2+ channels, achieves selectivity for Ca2+ by selective binding in a large pore with current-voltage characteristics shaped by internal Mg2+.
引用
收藏
页码:521 / 537
页数:17
相关论文
共 51 条
[11]   THE PERMEABILITY OF THE ENDPLATE CHANNEL TO ORGANIC CATIONS IN FROG-MUSCLE [J].
DWYER, TM ;
ADAMS, DJ ;
HILLE, B .
JOURNAL OF GENERAL PHYSIOLOGY, 1980, 75 (05) :469-492
[12]   CA2+ CHANNEL SELECTIVITY AT A SINGLE-LOCUS FOR HIGH-AFFINITY CA2+ INTERACTIONS [J].
ELLINOR, PT ;
YANG, J ;
SATHER, WA ;
ZHANG, JF ;
TSIEN, RW .
NEURON, 1995, 15 (05) :1121-1132
[13]   CHARACTERIZATION OF T-CELL MUTANTS WITH DEFECTS IN CAPACITATIVE CALCIUM-ENTRY - GENETIC-EVIDENCE FOR THE PHYSIOLOGICAL ROLES OF CRAC CHANNELS [J].
FANGER, CM ;
HOTH, M ;
CRABTREE, GR ;
LEWIS, RS .
JOURNAL OF CELL BIOLOGY, 1995, 131 (03) :655-667
[14]   IMPROVED PATCH-CLAMP TECHNIQUES FOR HIGH-RESOLUTION CURRENT RECORDING FROM CELLS AND CELL-FREE MEMBRANE PATCHES [J].
HAMILL, OP ;
MARTY, A ;
NEHER, E ;
SAKMANN, B ;
SIGWORTH, FJ .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1981, 391 (02) :85-100
[15]   THE TRP GENE IS ESSENTIAL FOR A LIGHT-ACTIVATED CA2+ CHANNEL IN DROSOPHILA PHOTORECEPTORS [J].
HARDIE, RC ;
MINKE, B .
NEURON, 1992, 8 (04) :643-651
[16]   MECHANISM OF ION PERMEATION THROUGH CALCIUM CHANNELS [J].
HESS, P ;
TSIEN, RW .
NATURE, 1984, 309 (5967) :453-456
[17]   CALCIUM-CHANNEL SELECTIVITY FOR DIVALENT AND MONO-VALENT CATIONS - VOLTAGE AND CONCENTRATION-DEPENDENCE OF SINGLE CHANNEL CURRENT IN VENTRICULAR HEART-CELLS [J].
HESS, P ;
LANSMAN, JB ;
TSIEN, RW .
JOURNAL OF GENERAL PHYSIOLOGY, 1986, 88 (03) :293-319
[18]   CALCIUM AND BARIUM PERMEATION THROUGH CALCIUM RELEASE-ACTIVATED CALCIUM (CRAC) CHANNELS [J].
HOTH, M .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1995, 430 (03) :315-322
[19]   CALCIUM RELEASE-ACTIVATED CALCIUM CURRENT IN RAT MAST-CELLS [J].
HOTH, M ;
PENNER, R .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 465 :359-386
[20]   DEPLETION OF INTRACELLULAR CALCIUM STORES ACTIVATES A CALCIUM CURRENT IN MAST-CELLS [J].
HOTH, M ;
PENNER, R .
NATURE, 1992, 355 (6358) :353-356