Explicit and implicit complementarity problems in a Hilbert space

被引:0
作者
Carbone, A [1 ]
Zabreiko, PP
机构
[1] Univ Calabria, Dipartimento Matemat, IT-87036 Arcavacata Di Rende, Cosenza, Italy
[2] Natl Acad Sci, Inst Math, Minsk 220072, BELARUS
[3] Belarusian State Univ, Fac Mech & Math, Minsk 220050, BELARUS
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2003年 / 22卷 / 01期
关键词
explicit and implicit complementarity problems; topological degree; exceptional elements; homotopy; operators of class S+; quasi-monotone operators;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some new results about solvability of implicit complementarity problems in a Hilbert space. We discuss two approaches. One of them is based on the usual change of variables and reduces the implicit complementarity problem to the explicit one. The second approach is based on the Skrypnik degree which, in the case of mappings in a Hilbert space, is essentially more general in comparison with the classical Leray-Schauder degree. In both cases, the solvability results are formulated in terms of auxiliary complementarity problems with parameter.
引用
收藏
页码:33 / 42
页数:10
相关论文
共 10 条
[1]  
[Anonymous], 1997, TOPICS NONLINEAR ANA
[2]  
Carbone A, 2002, Z ANAL ANWEND, V21, P1005
[3]   Exceptional families, topological degree and complementarity problems [J].
Isac, G ;
Bulavski, V ;
Kalashnikov, V .
JOURNAL OF GLOBAL OPTIMIZATION, 1997, 10 (02) :207-225
[4]   PROJECTION METHODS, ISOTONE PROJECTION CONES, AND THE COMPLEMENTARITY-PROBLEM [J].
ISAC, G ;
NEMETH, AB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 153 (01) :258-275
[5]  
ISAC G, 1992, LECT NOTES MATH, V1528, pR3
[6]  
ISAC G, 1988, CONT MATH, V72, P139
[7]  
ISAC G, 2000, TOPOLOGICAL METHODS
[8]  
Krasnoselskii M. A., 1984, GEOMETRICAL METHODS
[9]  
MOREAU JJ, 1962, CR HEBD ACAD SCI, V255, P238
[10]  
SKRYPNIK IV, 1994, TRANSL MATH MON, V139