Degenerate triply nonlinear problems with nonhomogeneous boundary conditions

被引:7
作者
Ammar, Kaouther [1 ]
机构
[1] TU Berlin, Inst Math, Berlin, Germany
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2010年 / 8卷 / 03期
关键词
Entropy solution; degenerate; Nonhomogenous boundary conditions; Diffusion; Continuous flux; SCALAR CONSERVATION-LAWS; ELLIPTIC-PARABOLIC PROBLEMS; MEASURE-VALUED SOLUTIONS; RENORMALIZED SOLUTIONS; ENTROPY SOLUTIONS; EQUATIONS; FLUX; CONVERGENCE; DIFFUSION; EXISTENCE;
D O I
10.2478/s11533-010-0032-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper addresses the existence and uniqueness of entropy solutions for the degenerate triply nonlinear problem: b(v)(t) - div a (v, del g(v)) = f on Q := (0, T) x Omega with the initial condition b(v(0, center dot)) = b(v(0)) on Omega and the nonhomogeneous boundary condition "v = u" on some part of the boundary (0, T) x partial derivative Omega". The function g is continuous locally Lipschitz continuous and has a flat region [A(1), A(2),] with A(1) <= 0 <= A(2) so that the problem is of parabolic-hyperbolic type.
引用
收藏
页码:548 / 568
页数:21
相关论文
共 40 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]   Existence of renormalized solutions of degenerate elliptic-parabolic problems [J].
Ammar, K ;
Wittbold, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :477-496
[3]  
Ammar K., 2008, ELECT J DIFFERENTIAL, P1
[4]  
AMMAR K, 2009, MAT COMPLUT, V22, P37
[5]   On nonlinear diffusion problems with strong degeneracy [J].
Ammar, Kaouther .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (08) :1841-1887
[6]   Scalar conservation laws with general boundary condition and continuous flux function [J].
Ammar, Kaouther ;
Wittbold, Petra ;
Carrillo, Jose .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (01) :111-139
[7]  
Ammar K, 2008, DIFFER INTEGRAL EQU, V21, P363
[8]  
Ammar K, 2010, DIFFER EQUAT APPL, V2, P189
[9]   Well-posedness results for triply nonlinear degenerate parabolic equations [J].
Andreianov, B. ;
Bendahmane, M. ;
Karlsen, K. H. ;
Ouaro, S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (01) :277-302
[10]  
ANDREIANOV B, 2000, THEIS U FRANCHE COMT