Dimensionality reduction based multi-kernel framework for drug-target interaction prediction

被引:4
作者
Mahmud, S. M. Hasan [1 ]
Chen, Wenyu [1 ]
Jahan, Hosney [2 ]
Liu, Yougsheng [1 ]
Hasan, S. M. Mamun [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[3] Rangpur Med Coll, Dept Internal Med, Rangpur 5400, Bangladesh
基金
中国国家自然科学基金;
关键词
Drug-target interactions (DTIs); Feature extraction; Molecular fingerprint; Feature selection; Data imbalance; Multi kernel learning; KERNEL MATRIX; IDENTIFICATION; PROTEINS; FINGERPRINTS;
D O I
10.1016/j.chemolab.2021.104270
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prediction of novel drug-target interactions (DTIs) has intrinsic significance in drug discovery research. Wetlab experiments of DTIs are laborious and expensive; computational methods can help minimize the complexity of identifying unknown DTIs and accelerate the drug repositioning process. Nowadays, the number of drug-target features and their interactions regularly increases, disabling traditional computational methods? prediction and analyzing ability. Therefore, developing a new robust model to derive the reduced features for effective prediction is important. Further, accurate interactions also depend on the negative drug-target pairs, and it is worthwhile to build a technique to generate perfect negative pairs. To this end, we propose a new multi-label approach, called idti-MLKdr, by introducing multi-kernel learning (MKL) based SVM for DTIs prediction with various dimensionality reduction techniques. First, we have extracted the drug-target features from chemical structures and protein sequences, applying different feature extraction methods. A new technique has been developed to construct the negative drug-target pairs based on drug-drug (or protein-protein) similarity scores. Then, threedimensionality reduction techniques have been applied to the extracted drug-target features. Finally, we trained a multi kernel-based learner together with the reduced features and combined their prediction scores to show the final results. In this experiment, we considered auROC as an evaluation metric. The proposed method has been compared with the various existing methods under five-fold cross-validation, and the experimental results indicated that idti-MLKdr attains the best auROC for predicting DTIs. We believe that improved prediction performance will motivate the researchers for further drug development.
引用
收藏
页数:13
相关论文
共 71 条
[1]   Drug-target interaction prediction through domain-tuned network-based inference [J].
Alaimo, Salvatore ;
Pulvirenti, Alfredo ;
Giugno, Rosalba ;
Ferro, Alfredo .
BIOINFORMATICS, 2013, 29 (16) :2004-2008
[2]   Characterization of silver nanoparticles biosynthesized using Amaranthus cruentus [J].
Baghani, Mohsen ;
Es-haghi, Ali .
BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS, 2020, 9 (03) :129-136
[3]   Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? [J].
Bajusz, David ;
Racz, Anita ;
Heberger, Kroly .
JOURNAL OF CHEMINFORMATICS, 2015, 7
[4]   The ChEMBL bioactivity database: an update [J].
Bento, A. Patricia ;
Gaulton, Anna ;
Hersey, Anne ;
Bellis, Louisa J. ;
Chambers, Jon ;
Davies, Mark ;
Krueger, Felix A. ;
Light, Yvonne ;
Mak, Lora ;
McGlinchey, Shaun ;
Nowotka, Michal ;
Papadatos, George ;
Santos, Rita ;
Overington, John P. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D1083-D1090
[5]  
Bingham E., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P245, DOI 10.1145/502512.502546
[6]   Supervised prediction of drug-target interactions using bipartite local models [J].
Bleakley, Kevin ;
Yamanishi, Yoshihiro .
BIOINFORMATICS, 2009, 25 (18) :2397-2403
[7]   Drug-target interaction prediction with Bipartite Local Models and hubness-aware regression [J].
Buza, Krisztian ;
Peska, Ladislav .
NEUROCOMPUTING, 2017, 260 :284-293
[8]   Drug target identification using side-effect similarity [J].
Campillos, Monica ;
Kuhn, Michael ;
Gavin, Anne-Claude ;
Jensen, Lars Juhl ;
Bork, Peer .
SCIENCE, 2008, 321 (5886) :263-266
[9]  
Chen FB, 2012, PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), P8
[10]   Drug-target interaction prediction: databases, web servers and computational models [J].
Chen, Xing ;
Yan, Chenggang Clarence ;
Zhang, Xiaotian ;
Zhang, Xu ;
Dai, Feng ;
Yin, Jian ;
Zhang, Yongdong .
BRIEFINGS IN BIOINFORMATICS, 2016, 17 (04) :696-712