Proton radiography to improve proton therapy treatment

被引:4
作者
Takatsu, J. [1 ]
van der Graaf, E. R. [2 ]
Van Goethem, M. -J. [3 ]
van Beuzekom, M. [4 ]
Klaver, T. [4 ]
Visser, J. [4 ]
Brandenburg, S. [2 ]
Biegun, A. K. [2 ]
机构
[1] Osaka Univ, Grad Sch Med, Dept Radiat Oncol, 2-2 D10 Yamadaoka, Suita, Osaka 5650871, Japan
[2] Univ Groningen, KVI Ctr Adv Radiat Technol, Zernikelaan 25, NL-9747 AA Groningen, Netherlands
[3] Univ Groningen, Univ Med Ctr Groningen, Dept Radiat Oncol, Hanzepl 1, NL-9700 RB Groningen, Netherlands
[4] Natl Inst Subatom Phys Nikhef, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands
关键词
Image reconstruction in medical imaging; Simulation methods and programs; RANGE UNCERTAINTIES; CT;
D O I
10.1088/1748-0221/11/01/C01004
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT) images. This causes systematic uncertainties in the calculated proton range in a patient of typically 3-4%, but can become even 10% in bone regions [1-8]. This may lead to no dose in parts of the tumor and too high dose in healthy tissues [9]. A direct measurement of proton stopping powers with high-energy protons will allow reducing these uncertainties and will improve the quality of the treatment. Several studies have shown that a sufficiently accurate radiograph can be obtained by tracking individual protons traversing a phantom (patient) [4, 6, 10]. Our studies benefit from the gas-filled time projection chambers based on GridPix technology [11], developed at Nikhef, capable of tracking a single proton. A BaF2 crystal measuring the residual energy of protons was used. Proton radiographs of phantom consisting of different tissue-like materials were measured with a 30 x 30 mm(2) 150 MeV proton beam. Measurements were simulated with the Geant4 toolkit. First experimental and simulated energy radiographs are in very good agreement [12]. In this paper we focus on simulation studies of the proton scattering angle as it affects the position resolution of the proton energy loss radiograph. By selecting protons with a small scattering angle, the image quality can be improved significantly.
引用
收藏
页数:9
相关论文
共 17 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]  
Biegun A.K., 2015, IEEE T MED IN PRESS
[3]  
Cirrone G., 2011, Prog Nucl Sci Technol, V2, P207, DOI 10.15669/pnst.2.207
[4]   The Italian project for a proton imaging device [J].
Cirrone, G. A. P. ;
Candiano, G. ;
Cuttone, G. ;
Lo Nigro, S. ;
Lo Presti, D. ;
Randazzo, N. ;
Sipala, V. ;
Russo, M. ;
Aiello, S. ;
Bruzzi, M. ;
Menichelli, D. ;
Secringella, M. ;
Miglio, S. ;
Bucciolini, M. ;
Talamonti, C. ;
Pallotta, S. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 576 (01) :194-197
[5]   In vivo proton range verification: a review [J].
Knopf, Antje-Christin ;
Lomax, Antony .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (15) :131-160
[6]   Deriving concentrations of oxygen and carbon in human tissues using single- and dual-energy CT for ion therapy applications [J].
Landry, Guillaume ;
Parodi, Katia ;
Wildberger, Joachim E. ;
Verhaegen, Frank .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (15) :5029-5048
[8]   200 MeV Proton Radiography Studies With a Hand Phantom Using a Prototype Proton CT Scanner [J].
Plautz, Tia ;
Bashkirov, V. ;
Feng, V. ;
Hurley, F. ;
Johnson, R. P. ;
Leary, C. ;
Macafee, S. ;
Plumb, A. ;
Rykalin, V. ;
Sadrozinski, H. F. -W. ;
Schubert, K. ;
Schulte, R. ;
Schultze, B. ;
Steinberg, D. ;
Witt, M. ;
Zatserklyaniy, A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (04) :875-881
[9]   Proton radiography and tomography with application to proton therapy [J].
Poludniowski, G. ;
Allinson, N. M. ;
Evans, P. M. .
BRITISH JOURNAL OF RADIOLOGY, 2015, 88 (1053)
[10]   Density and spatial resolutions of proton radiography using a range modulation technique [J].
Ryu, Hyungjoon ;
Song, Eunsuk ;
Lee, Jaeki ;
Kim, Jongwon .
PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (19) :5461-5468