Prediction of thermo-physical properties of 1-Butyl-3-methylimidazolium hexafluorophosphate for CO2 capture using machine learning models

被引:39
|
作者
Mazari, Shaukat Ali [1 ]
Siyal, Ahsan Raza [2 ]
Solangi, Nadeem Hussain [1 ]
Ahmed, Saleem [3 ]
Griffin, Gregory [4 ]
Abro, Rashid [1 ]
Mubarak, Nabisab Mujawar [5 ]
Ahmed, Mushtaq [6 ]
Sabzoi, Nizamuddin [4 ]
机构
[1] Dawood Univ Engn & Technol, Dept Chem Engn, Karachi 74800, Pakistan
[2] Dawood Univ Engn & Technol, Dept Elect Engn, Karachi 74800, Pakistan
[3] Dawood Univ Engn & Technol, Dept Comp Syst Engn, Karachi 74800, Pakistan
[4] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia
[5] Curtin Univ, Fac Engn & Sci, Dept Chem Engn, Sarawak 98009, Malaysia
[6] Univ Malaya, Fac Engn, Dept Chem Engn, Kuala Lumpur 50603, Malaysia
关键词
CO2; capture; Bmim][PF6; Physical properties; Machine learning; Gaussian process regression; Support vector machine;
D O I
10.1016/j.molliq.2020.114785
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Physical and thermodynamic properties of physical or chemical solvents are of utmost importance for mass and heat transfer calculations, process design and solvent regeneration. In recent times, machine learning has attracted interest for applications in several fields of engineering sciences. The ionic liquid 1-Butyl-3-methylimidazolium hexafluorophosphate [Bmim][PF6] is an emerging solvent for CO2 capture. In this study, three Gaussian process regression (GPR) models - the Matern 5/2 GPR model, rational quadratic GPR model, squared exponential GPR model - and one support vector machine (SVM) model (the nonlinear SVM)- are developed for predicting CO2 solubility, density, viscosity andmolar heat capacity of [Bmim][PF6]. Detailed statistics of each model and comparative analyses between the models and their predicted results with experimental results is highlighted. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Experimental densities of 2,2,2-trifluoroethanol with 1-butyl-3-methylimidazolium hexafluorophosphate at high pressures and modelling with PC-SAFT
    Curras, Moises R.
    Mato, Marta M.
    Sanchez, Pablo B.
    Garcia, Josefa
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2017, 113 : 29 - 40
  • [32] Density and viscosity of aqueous blend of 1-butyl-3-methylimidazolium tetrafluoroburate ([Bmim][BF4]) + piperazine (PZ) and its performance of CO2 absorption
    Lu, Jian-Gang
    Ma, Hong-Lu
    Shao, Ying
    Li, Xiang
    Wang, Jiu-Yang
    Zhao, Xin
    Xu, Zheng-Wen
    JOURNAL OF MOLECULAR LIQUIDS, 2019, 277 : 302 - 309
  • [33] Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning
    Mesbah, Mohammad
    Shahsavari, Shohreh
    Soroush, Ebrahim
    Rahaei, Neda
    Rezakazemi, Mashallah
    JOURNAL OF CO2 UTILIZATION, 2018, 25 : 99 - 107
  • [34] Experimental Investigation on the Solubility and Initial Rate of Absorption of CO2 in Aqueous Mixtures of Methyldiethanolamine with the Ionic Liquid 1-Butyl-3-methylimidazolium Tetrafluoroborate
    Ahmady, Afshin
    Hashim, Mohd Ali
    Aroua, Mohamed Kheireddine
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2010, 55 (12) : 5733 - 5738
  • [35] Simultaneous measurement absorption of CO2 and H2S mixture into aqueous solutions containing Diisopropanolamine blended with 1-butyl-3-methylimidazolium acetate ionic liquid
    Afsharpour, Alireza
    Haghtalab, Ali
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 58 : 71 - 80
  • [36] Investigation on physical and electrochemical properties of three imidazolium based ionic liquids (1-hexyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide and 1-butyl-3-methylimidazolium methylsulfate)
    Beigi, Ali Akbar Miran
    Abdouss, Majid
    Yousefi, Maryam
    Pourmortazavi, Seied Mandi
    Vahid, Amir
    JOURNAL OF MOLECULAR LIQUIDS, 2013, 177 : 361 - 368
  • [37] Solubility and Diffusivity of CO2 in the Ionic Liquid 1-Butyl-3-methylimidazolium Tricyanomethanide within a Large Pressure Range (0.01 MPa to 10 MPa)
    Zubeir, Lawien F.
    Romanos, George E.
    Weggemans, Wilko M. A.
    Iliev, Boyan
    Schubert, Thomas J. S.
    Kroon, Maaike C.
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2015, 60 (06) : 1544 - 1562
  • [38] Modelling of a Post-combustion CO2 Capture Process Using Extreme Learning Machine
    Li, Fei
    Zhang, Jie
    Oko, Eni
    Wang, Meihong
    2016 21ST INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2016, : 1252 - 1257
  • [39] Computational and Machine Learning Methods for CO2 Capture Using Metal-Organic Frameworks
    Mashhadimoslem, Hossein
    Abdol, Mohammad Ali
    Karimi, Peyman
    Zanganeh, Kourosh
    Shafeen, Ahmed
    Elkamel, Ali
    Kamkar, Milad
    ACS NANO, 2024, 18 (35) : 23842 - 23875
  • [40] Prediction of CO2 solubility in aqueous amine solutions using machine learning method
    Liu, Bin
    Yu, Yanan
    Liu, Zijian
    Cui, Zhe
    Tian, Wende
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354