Data Fusion by Matrix Factorization

被引:156
作者
Zitnik, Marinka [1 ]
Zupan, Blaz [1 ,2 ]
机构
[1] Univ Ljubljana, Fac Comp & Informat Sci, SI-1000 Ljubljana, Slovenia
[2] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
关键词
Data fusion; intermediate data integration; matrix factorization; data mining; bioinformatics; cheminformatics; INFORMATION FUSION; DISCOVERY; NETWORKS; KNOWLEDGE; FRAMEWORK; MODULES; CANCER;
D O I
10.1109/TPAMI.2014.2343973
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For most problems in science and engineering we can obtain data sets that describe the observed system from various perspectives and record the behavior of its individual components. Heterogeneous data sets can be collectively mined by data fusion. Fusion can focus on a specific target relation and exploit directly associated data together with contextual data and data about system's constraints. In the paper we describe a data fusion approach with penalized matrix tri-factorization (DFMF) that simultaneously factorizes data matrices to reveal hidden associations. The approach can directly consider any data that can be expressed in a matrix, including those from feature-based representations, ontologies, associations and networks. We demonstrate the utility of DFMF for gene function prediction task with eleven different data sources and for prediction of pharmacologic actions by fusing six data sources. Our data fusion algorithm compares favorably to alternative data integration approaches and achieves higher accuracy than can be obtained from any single data source alone.
引用
收藏
页码:41 / 53
页数:13
相关论文
共 68 条
[1]   Gene prioritization through genomic data fusion [J].
Aerts, S ;
Lambrechts, D ;
Maity, S ;
Van Loo, P ;
Coessens, B ;
De Smet, F ;
Tranchevent, LC ;
De Moor, B ;
Marynen, P ;
Hassan, B ;
Carmeliet, P ;
Moreau, Y .
NATURE BIOTECHNOLOGY, 2006, 24 (05) :537-544
[2]  
Albright R., 2006, 81706 N CAR STAT U D
[3]   Global networks of functional coupling in eukaryotes from comprehensive data integration [J].
Alexeyenko, Andrey ;
Sonnhammer, Erik L. L. .
GENOME RESEARCH, 2009, 19 (06) :1107-1116
[4]  
[Anonymous], 2005, P 18 INT C NEUR INF
[5]  
[Anonymous], 2010, P C UNCERTAINTY ARTI
[6]  
[Anonymous], 2007, Technical report
[7]  
[Anonymous], 2009, P 2009 C ADV NEUR IN
[8]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[9]  
Bach R.R., 2004, ICML '04, P41, DOI [DOI 10.1145/1015330.1015424, 10.1145/1015330.1015424]
[10]   Microarray-based classification and clinical predictors: on combined classifiers and additional predictive value [J].
Boulesteix, Anne-Laure ;
Porzelius, Christine ;
Daumer, Martin .
BIOINFORMATICS, 2008, 24 (15) :1698-1706