Hydrothermal synthesis of nano spheroid-like ZnMn2O4 materials as high-performance anodes for lithium-ion batteries Prepared nano ZnMn2O4 from spent zinc-manganese batteries

被引:14
作者
Li, Pengwei [1 ,2 ]
Luo, Shao-hua [1 ,2 ,3 ,4 ,5 ]
Wang, Qing [1 ,2 ,4 ]
Zhang, Yahui [1 ,2 ,4 ]
Liu, Xin [1 ,2 ,4 ]
Xu, Caihong [4 ]
Liang, Jinsheng [6 ]
Duan, Xinhui [6 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang, Peoples R China
[2] Northeastern Univ Qinhuangdao, Key Lab Dielect & Electrolyte Funct Mat Hebei Pro, Qinhuangdao, Hebei, Peoples R China
[3] Northeastern Univ, State Key Lab Rolling & Automat, Shenyang, Peoples R China
[4] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Qinhuangdao 066004, Hebei, Peoples R China
[5] Northeastern Univ Qinhuangdao, Qinhuangdao Lab Resources Cleaner Convers & Effic, Qinhuangdao, Hebei, Peoples R China
[6] Hebei Univ Technol, Mfg Innovat Ctr Solid Waste Resource Utilizat & E, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
anode; hydrothermal; lithium-ion batteries; recycling; ZnMn2O4; X-RAY-DIFFRACTION; ELECTRODE MATERIALS; CATHODE MATERIALS; HIGH-CAPACITY; CARBON; MICROSPHERES; FABRICATION; STABILITY; DIOXIDE; SURFACE;
D O I
10.1002/er.6953
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Spent zinc-manganese batteries contain valuable elements, especially Zn and Mn, and recycling these metal elements can realize the sustainable development of resources. In this paper, a novel process of preparing ZnMn2O4 as anode material for lithium-ion batteries from the spent zinc-manganese battery is present. Nano ZnMn2O4 is synthesized by the low-temperature hydrothermal method, and the formation mechanism is discussed. The structure, morphology, and composition of the products are characterized by XRD and SEM. The result shows that ZnMn2O4 with a crystal size of about 50 nm is prepared under the conditions of T = 200 degrees C, pH = 7, reaction time t = 3 days, and n(Zn: Mn) = 0.966:2, which have the advantages of good crystallinity and high purity. The nanocrystallization and spheroid-like structure of ZnMn2O4 determine that the battery assembled with ZnMn2O4 has a high initial discharge capacity, and the initial discharge specific capacity reaches 902.5 mAh g(-1) at 0.1 A g(-1). This study shows that the nano ZnMn2O4 synthesized by the hydrothermal method is a promising anode material for lithium-ion batteries.
引用
收藏
页码:18081 / 18090
页数:10
相关论文
共 49 条
[11]   Electrochemical Performance and ex situ Analysis of ZnMn2O4 Nanowires as Anode Materials for Lithium Rechargeable Batteries [J].
Kim, Sung-Wook ;
Lee, Hyun-Wook ;
Muralidharan, Pandurangan ;
Seo, Dong-Hwa ;
Yoon, Won-Sub ;
Kim, Do Kyung ;
Kang, Kisuk .
NANO RESEARCH, 2011, 4 (05) :505-510
[12]   Three-Dimensional Honeycomb-Structural LiAlO2-Modified LiMnPO4 Composite with Superior High Rate Capability as Li-Ion Battery Cathodes [J].
Li, Junzhe ;
Luo, Shaohua ;
Ding, Xueyong ;
Wang, Qing ;
He, Ping .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (13) :10786-10795
[13]   Cleaner and effective recovery of metals and synthetic lithium-ion batteries from extracted vanadium residue through selective leaching [J].
Li, Pengwei ;
Luo, Shao-hua ;
Wang, Yafeng ;
Yan, Shengxue ;
Teng, Fei ;
Feng, Jian ;
Wang, Qing ;
Zhang, Yahui ;
Mu, Wenning ;
Zhai, Xiangle ;
Liu, Xin .
JOURNAL OF POWER SOURCES, 2021, 482
[14]   ZnMn2O4 spheres anchored on jute porous carbon for use as a high-performance anode material in lithium-ion batteries [J].
Liang, Ce ;
Chen, Jianfu ;
Yu, Kaifeng ;
Jin, Wenming .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 878
[15]   Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries [J].
Liang, Chu ;
Gao, Mingxia ;
Pan, Hongge ;
Liu, Yongfeng ;
Yan, Mi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 575 :246-256
[16]   Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries [J].
Liang, Hao-Jie ;
Hou, Bao-Hua ;
Li, Wen-Hao ;
Ning, Qiu-Li ;
Yang, Xu ;
Gu, Zhen-Yi ;
Nie, Xue-Jiao ;
Wang, Guang ;
Wu, Xing-Long .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (12) :3575-3584
[17]   Design and synthesis of carbon-coated α-Fe2O3@Fe3O4 heterostructured as anode materials for lithium ion batteries [J].
Liu, Huan ;
Luo, Shao-hua ;
Hu, Dong-bei ;
Liu, Xin ;
Wang, Qing ;
Wang, Zhi-yuan ;
Wang, Ying-ling ;
Chang, Long-jiao ;
Liu, Yan-guo ;
Yi, Ting-Feng ;
Zhang, Ya-hui ;
Hao, Ai-min .
APPLIED SURFACE SCIENCE, 2019, 495
[18]   Metal Oxides with Distinctive Valence States in an Electron-Rich Matrix Enable Stable High-Capacity Anodes for Li Ion Batteries [J].
Liu, Jipeng ;
Dong, Liwei ;
Chen, Dongjiang ;
Han, Yupei ;
Liang, Yifang ;
Yang, Mengqiu ;
Han, Jiecai ;
Yang, Chunhui ;
He, Weidong .
SMALL METHODS, 2020, 4 (02)
[19]   Solvent-controlled synthesis of mesoporous CoO with different morphologies as binder-free anodes for lithium-ion batteries [J].
Liu, Miao ;
Li, Youpeng ;
Wang, Kang ;
Luo, Yizhen ;
Hou, Shuang ;
Wang, Pu ;
Pang, Fang ;
Ji, Fengzhen ;
Zhao, Lingzhi .
CERAMICS INTERNATIONAL, 2018, 44 (16) :19631-19638
[20]   Concurrent recycling chemistry for cathode/anode in spent graphite/LiFePO4 batteries: Designing a unique cation/anion-co-workable dual-ion battery [J].
Meng, Yun-Feng ;
Liang, Hao-Jie ;
Zhao, Chen-De ;
Li, Wen-Hao ;
Gu, Zhen-Yi ;
Yu, Meng-Xuan ;
Zhao, Bo ;
Hou, Xian-Kun ;
Wu, Xing-Long .
JOURNAL OF ENERGY CHEMISTRY, 2022, 64 :166-171