Meta-Learning Based Dynamic Computation Task Offloading for Mobile Edge Computing Networks

被引:40
作者
Huang, Liang [1 ]
Zhang, Luxin [2 ]
Yang, Shicheng [2 ]
Qian, Li Ping [2 ]
Wu, Yuan [3 ,4 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hanghzou 310014, Peoples R China
[2] Zhejiang Univ Technol, Coll Informat Engn, Hanghzou 310014, Peoples R China
[3] Univ Macau, State Key Lab Internet Things Smart City, Macau, Peoples R China
[4] Univ Macau, Dept Comp & Informat Sci, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Training; Servers; Delays; Heuristic algorithms; Computational modeling; Wireless communication; Mobile-edge computing; meta-learning; deep learning; computation offloading;
D O I
10.1109/LCOMM.2020.3048075
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Deep learning-based algorithms provide a promising solution to efficiently generate offloading decisions in mobile edge computing (MEC) networks. However, considering dynamic MEC devices or offloading tasks, most of them require large-scale training data and long training time to retrain the deep neural networks (DNNs). In this letter, we propose a MEta-Learning-based computation Offloading (MELO) algorithm for dynamic computation tasks in MEC networks. Specifically, it learns from historical MEC task scenarios and adapts to a new MEC task scenario with a few training samples. Numerical results show that the proposed algorithm can adapt to a new MEC task scenario and achieve 99% accuracy via 1-step fine-tuning using only 10 training samples.
引用
收藏
页码:1568 / 1572
页数:5
相关论文
共 14 条
[1]   Joint Optimization of Service Caching Placement and Computation Offloading in Mobile Edge Computing Systems [J].
Bi, Suzhi ;
Huang, Liang ;
Zhang, Ying-Jun Angela .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (07) :4947-4963
[2]   Edge Computing Resources Reservation in Vehicular Networks: A Meta-Learning Approach [J].
Chen, Dawei ;
Liu, Yin-Chen ;
Kim, BaekGyu ;
Xie, Jiang ;
Hong, Choong Seon ;
Han, Zhu .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (05) :5634-5646
[3]   Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing [J].
Chen, Xu ;
Jiao, Lei ;
Li, Wenzhong ;
Fu, Xiaoming .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2016, 24 (05) :2827-2840
[4]   On the Fundamental Characteristics of Ultra-Dense Small Cell Networks [J].
Ding, Ming ;
Lopez-Perez, David ;
Claussen, Holger ;
Kaafar, Mohamed Ali .
IEEE NETWORK, 2018, 32 (03) :92-100
[5]  
Finn C, 2017, PR MACH LEARN RES, V70
[6]  
Guo ST, 2016, IEEE INFOCOM SER
[7]   Characterizing the Spectral Properties and Time Variation of the In-Vehicle Wireless Communication Channel [J].
Herbert, Steven ;
Wassell, Ian ;
Loh, Tian-Hong ;
Rigelsford, Jonathan .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2014, 62 (07) :2390-2399
[8]   Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-Edge Computing Networks [J].
Huang, Liang ;
Bi, Suzhi ;
Zhang, Ying-Jun Angela .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2020, 19 (11) :2581-2593
[9]   Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks [J].
Huang, Liang ;
Feng, Xu ;
Feng, Anqi ;
Huang, Yupin ;
Qian, Li Ping .
MOBILE NETWORKS & APPLICATIONS, 2022, 27 (03) :1123-1130
[10]   Mobile Edge Computing: A Survey on Architecture and Computation Offloading [J].
Mach, Pavel ;
Becvar, Zdenek .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (03) :1628-1656