Meta-Learning Based Dynamic Computation Task Offloading for Mobile Edge Computing Networks

被引:37
作者
Huang, Liang [1 ]
Zhang, Luxin [2 ]
Yang, Shicheng [2 ]
Qian, Li Ping [2 ]
Wu, Yuan [3 ,4 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hanghzou 310014, Peoples R China
[2] Zhejiang Univ Technol, Coll Informat Engn, Hanghzou 310014, Peoples R China
[3] Univ Macau, State Key Lab Internet Things Smart City, Macau, Peoples R China
[4] Univ Macau, Dept Comp & Informat Sci, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Training; Servers; Delays; Heuristic algorithms; Computational modeling; Wireless communication; Mobile-edge computing; meta-learning; deep learning; computation offloading;
D O I
10.1109/LCOMM.2020.3048075
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Deep learning-based algorithms provide a promising solution to efficiently generate offloading decisions in mobile edge computing (MEC) networks. However, considering dynamic MEC devices or offloading tasks, most of them require large-scale training data and long training time to retrain the deep neural networks (DNNs). In this letter, we propose a MEta-Learning-based computation Offloading (MELO) algorithm for dynamic computation tasks in MEC networks. Specifically, it learns from historical MEC task scenarios and adapts to a new MEC task scenario with a few training samples. Numerical results show that the proposed algorithm can adapt to a new MEC task scenario and achieve 99% accuracy via 1-step fine-tuning using only 10 training samples.
引用
收藏
页码:1568 / 1572
页数:5
相关论文
共 14 条
  • [1] Joint Optimization of Service Caching Placement and Computation Offloading in Mobile Edge Computing Systems
    Bi, Suzhi
    Huang, Liang
    Zhang, Ying-Jun Angela
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (07) : 4947 - 4963
  • [2] Edge Computing Resources Reservation in Vehicular Networks: A Meta-Learning Approach
    Chen, Dawei
    Liu, Yin-Chen
    Kim, BaekGyu
    Xie, Jiang
    Hong, Choong Seon
    Han, Zhu
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (05) : 5634 - 5646
  • [3] Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing
    Chen, Xu
    Jiao, Lei
    Li, Wenzhong
    Fu, Xiaoming
    [J]. IEEE-ACM TRANSACTIONS ON NETWORKING, 2016, 24 (05) : 2827 - 2840
  • [4] On the Fundamental Characteristics of Ultra-Dense Small Cell Networks
    Ding, Ming
    Lopez-Perez, David
    Claussen, Holger
    Kaafar, Mohamed Ali
    [J]. IEEE NETWORK, 2018, 32 (03): : 92 - 100
  • [5] Finn C, 2017, PR MACH LEARN RES, V70
  • [6] Guo ST, 2016, IEEE INFOCOM SER
  • [7] Characterizing the Spectral Properties and Time Variation of the In-Vehicle Wireless Communication Channel
    Herbert, Steven
    Wassell, Ian
    Loh, Tian-Hong
    Rigelsford, Jonathan
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2014, 62 (07) : 2390 - 2399
  • [8] Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-Edge Computing Networks
    Huang, Liang
    Bi, Suzhi
    Zhang, Ying-Jun Angela
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2020, 19 (11) : 2581 - 2593
  • [9] Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks
    Huang, Liang
    Feng, Xu
    Feng, Anqi
    Huang, Yupin
    Qian, Li Ping
    [J]. MOBILE NETWORKS & APPLICATIONS, 2022, 27 (03) : 1123 - 1130
  • [10] Mobile Edge Computing: A Survey on Architecture and Computation Offloading
    Mach, Pavel
    Becvar, Zdenek
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (03): : 1628 - 1656