Resolution enhancement in long pulse OTDR for application in structural health monitoring

被引:29
作者
Bahrampour, Ali Reza [1 ,2 ]
Maasoumi, Fatemeh [1 ]
机构
[1] Int Ctr Sci & High Technol & Environm Sci, Kerman, Iran
[2] Sharif Univ Technol, Tehran, Iran
关键词
Structural health monitoring; Optical time domain reflectometer (OTDR); ForWaRD method; Wavelet; DECONVOLUTION; WAVELET;
D O I
10.1016/j.yofte.2010.05.003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To improve the range resolution in inexpensive conventional long pulse optical time domain reflectometer (OTDR) for application in structural health monitoring (SHM) and robotic neural network, the Fourier Wavelet Regularized Deconvolution (ForWaRD) based on the adaptive wavelet method is employed. Since Deconvolution is a noise sensitive process, employing the (ForWaRD) method enhances the signal to noise ratio. Simulation for long pulse OTDR system is done and ForWaRD method is employed to improve the resolution of the OTDR system to the order of several centimeters. In this method the resolution is limited by the bandwidth of detector, bandwidth of electronic circuit, and the sampling rate of analog to digital convertor. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:240 / 249
页数:10
相关论文
共 40 条
[1]  
Anderson D.R., 2004, TROUBLESHOOTING OPTI
[2]   A variational method for designing wavelets to match a specified signal [J].
Bahrampour, A. R. ;
Izadnia, S. ;
Vahedi, M. .
SIGNAL PROCESSING, 2008, 88 (10) :2417-2424
[3]   Fourier-wavelet regularized deconvolution (ForWaRD) for lidar systems based on TEA-CO2 laser [J].
Bahrampour, AR ;
Askari, AA .
OPTICS COMMUNICATIONS, 2006, 257 (01) :97-111
[4]   DETERMINATION OF THE INDIVIDUAL STRAIN-OPTIC COEFFICIENTS IN SINGLE-MODE OPTICAL FIBERS [J].
BERTHOLDS, A ;
DANDLIKER, R .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1988, 6 (01) :17-20
[5]   FIBER OPTICS STRAIN-GAUGE [J].
BUTTER, CD ;
HOCKER, GB .
APPLIED OPTICS, 1978, 17 (18) :2867-2869
[6]  
Daubechies I., 1992, SOC IND APPL MATH, V61, P53, DOI [DOI 10.1137/1.9781611970104, 10.1137/1.9781611970104]
[7]  
DEBNATH L, 2002, WAVELET TRANSFORM TH, pCH7
[8]  
Donoho DL, 1999, STAT SINICA, V9, P1
[9]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[10]  
DREISCHUH TN, 1995, J OSA, V2, P301