A uniform numerical method for dealing with a singularly perturbed delay initial value problem

被引:43
作者
Amiraliyeva, I. G. [1 ]
Erdogan, F. [2 ]
Amiraliyev, G. M. [1 ]
机构
[1] Sinop Univ, Fac Sci, Dept Math, TR-57000 Sinop, Turkey
[2] Yuzuncu Yil Univ, Fac Art & Sci, Dept Math, TR-65080 Van, Turkey
关键词
Delay differential equation; Singular perturbation; Exponentially fitted difference scheme; Uniformly convergent; Error estimates; BOUNDARY-VALUE-PROBLEMS; DIFFERENCE; EQUATIONS;
D O I
10.1016/j.aml.2010.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work deals with a singularly perturbed initial value problem fora quasi-linear second-order delay differential equation. An exponentially fitted difference scheme is constructed, in an equidistant mesh, which gives first-order uniform convergence in the discrete maximum norm. Numerical results are also presented. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1221 / 1225
页数:5
相关论文
共 17 条
[1]   A finite difference scheme for a class of singularly perturbed initial value problems for delay differential equations [J].
Amiraliyev, Gabil M. ;
Erdogan, Fevzi .
NUMERICAL ALGORITHMS, 2009, 52 (04) :663-675
[2]   A uniformly convergent finite difference method for a singularly perturbed initial value problem [J].
Amiraliyev, GM ;
Duru, H .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1999, 20 (04) :379-387
[3]  
Amiraliyev GM., 1995, Turkish J. Math, V19, P207
[4]  
[Anonymous], 2003, Numerical Methods for Delay Differential Equations
[5]  
Bellman R.E., 1963, Differential-Difference Equations, V6
[6]   BIFURCATION GAP IN A HYBRID OPTICALLY BISTABLE SYSTEM [J].
DERSTINE, MW ;
GIBBS, HM ;
HOPF, FA ;
KAPLAN, DL .
PHYSICAL REVIEW A, 1982, 26 (06) :3720-3722
[7]  
Driver RD, 1977, APPLMATH SCI
[8]  
Farrell P., 2000, Robust Computational Techniques for Boundary Layers
[9]   A numerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations [J].
Kadalbajoo, Mohan K. ;
Sharma, Kapil K. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (02) :692-707
[10]   SINGULAR PERTURBATION ANALYSIS OF BOUNDARY-VALUE-PROBLEMS FOR DIFFERENTIAL-DIFFERENCE EQUATIONS .6. SMALL SHIFTS WITH RAPID OSCILLATIONS [J].
LANGE, CG ;
MIURA, RM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (01) :273-283