Quantum Fisher Information in the Generalized One-axis Twisting Model

被引:27
作者
Liu, Wan-Fang [1 ,2 ]
Xiong, Heng-Na [1 ]
Ma, Jian [1 ]
Wang, Xiaoguang [1 ]
机构
[1] Zhejiang Univ, Dept Phys, Zhejiang Inst Modern Phys, Hangzhou 310027, Zhejiang, Peoples R China
[2] Anqing Teachers Coll, Sch Phys & Elect Engn, Anqing 246011, Peoples R China
关键词
Quantum Fisher information; One-axis twisting model; Heisenberg limit; Entanglement; STATISTICAL DISTANCE; STATE;
D O I
10.1007/s10773-010-0286-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the quantum Fisher information (QFI) of symmetric states for spin-s particles. We derive the maximal QFI, and find that quantum spin correlations are essential ingredients of the maximal QFI. We make applications to the generalized one-axis twisting model. The results show that the redistributions of uncertainties on the basis of the quantum correlations in the multiqubit system are useful for sub-shot-noise phase sensitivity. Furthermore, for high-spin (s > 1/2) composite systems, we find a sufficient criterion for entanglement.
引用
收藏
页码:1073 / 1081
页数:9
相关论文
共 23 条
[1]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[2]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[3]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[4]   Effect of disorder on quantum phase transitions in anisotropic XY spin chains in a transverse field [J].
Bunder, JE ;
McKenzie, RH .
PHYSICAL REVIEW B, 1999, 60 (01) :344-358
[5]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[6]   Renyi entropy of the XY spin chain [J].
Franchini, F. ;
Its, A. R. ;
Korepin, V. E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (02)
[7]  
Helstrom C W, 1976, QUANTUM DETECTION ES, P8
[8]  
Holevo A. S., 1982, Probabilistic and statistical aspect of quantum theory
[9]   SQUEEZED SPIN STATES [J].
KITAGAWA, M ;
UEDA, M .
PHYSICAL REVIEW A, 1993, 47 (06) :5138-5143
[10]   Maximum Fisher information in mixed state quantum systems [J].
Luati, A .
ANNALS OF STATISTICS, 2004, 32 (04) :1770-1779