Quantum Fisher Information in the Generalized One-axis Twisting Model

被引:27
作者
Liu, Wan-Fang [1 ,2 ]
Xiong, Heng-Na [1 ]
Ma, Jian [1 ]
Wang, Xiaoguang [1 ]
机构
[1] Zhejiang Univ, Dept Phys, Zhejiang Inst Modern Phys, Hangzhou 310027, Zhejiang, Peoples R China
[2] Anqing Teachers Coll, Sch Phys & Elect Engn, Anqing 246011, Peoples R China
关键词
Quantum Fisher information; One-axis twisting model; Heisenberg limit; Entanglement; STATISTICAL DISTANCE; STATE;
D O I
10.1007/s10773-010-0286-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the quantum Fisher information (QFI) of symmetric states for spin-s particles. We derive the maximal QFI, and find that quantum spin correlations are essential ingredients of the maximal QFI. We make applications to the generalized one-axis twisting model. The results show that the redistributions of uncertainties on the basis of the quantum correlations in the multiqubit system are useful for sub-shot-noise phase sensitivity. Furthermore, for high-spin (s > 1/2) composite systems, we find a sufficient criterion for entanglement.
引用
收藏
页码:1073 / 1081
页数:9
相关论文
共 23 条
  • [1] COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES
    BENNETT, CH
    WIESNER, SJ
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (20) : 2881 - 2884
  • [2] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [3] STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (22) : 3439 - 3443
  • [4] Effect of disorder on quantum phase transitions in anisotropic XY spin chains in a transverse field
    Bunder, JE
    McKenzie, RH
    [J]. PHYSICAL REVIEW B, 1999, 60 (01) : 344 - 358
  • [5] QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM
    EKERT, AK
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (06) : 661 - 663
  • [6] Renyi entropy of the XY spin chain
    Franchini, F.
    Its, A. R.
    Korepin, V. E.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (02)
  • [7] Helstrom C W, 1976, QUANTUM DETECTION ES, P8
  • [8] Holevo A. S., 1982, Probabilistic and statistical aspect of quantum theory
  • [9] SQUEEZED SPIN STATES
    KITAGAWA, M
    UEDA, M
    [J]. PHYSICAL REVIEW A, 1993, 47 (06): : 5138 - 5143
  • [10] Maximum Fisher information in mixed state quantum systems
    Luati, A
    [J]. ANNALS OF STATISTICS, 2004, 32 (04) : 1770 - 1779