Engineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocks

被引:28
作者
Lam, Felix H. [1 ,2 ]
Turanli-Yildiz, Burcu [1 ,2 ]
Liu, Dany [1 ,2 ,4 ]
Resch, Michael G. [3 ]
Fink, Gerald R. [2 ]
Stephanopoulos, Gregory [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
[3] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA
[4] Chalmers Univ Technol, Dept Biol & Biol Engn, Gothenburg, Sweden
来源
SCIENCE ADVANCES | 2021年 / 7卷 / 26期
关键词
CELLULOSIC ETHANOL-PRODUCTION; SACCHAROMYCES-CEREVISIAE; PYRUVATE DECARBOXYLASE; LACTIC-ACID; GENE; FERMENTATION; PRETREATMENT; INHIBITORS; XYLOSE; REDUCTION;
D O I
10.1126/sciadv.abf7613
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lignocellulosic biomass remains unharnessed for the production of renewable fuels and chemicals due to challenges in deconstruction and the toxicity its hydrolysates pose to fermentation microorganisms. Here, we show in Saccharomyces cerevisiae that engineered aldehyde reduction and elevated extracellular potassium and pH are sufficient to enable near-parity production between inhibitor-laden and inhibitor-free feedstocks. By specifically targeting the universal hydrolysate inhibitors, a single strain is enhanced to tolerate a broad diversity of highly toxified genuine feedstocks and consistently achieve industrial-scale titers (cellulosic ethanol of >100 grams per liter when toxified). Furthermore, a functionally orthogonal, lightweight design enables seamless transferability to existing metabolically engineered chassis strains: We endow full, multifeedstock tolerance on a xylose-consuming strain and one producing the biodegradable plastics precursor lactic acid. The demonstration of "drop-in" hydrolysate competence enables the potential of cost-effective, at-scale biomass utilization for cellulosic fuel and nonfuel products alike.
引用
收藏
页数:13
相关论文
共 62 条
  • [1] Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges
    Abbott, Derek A.
    Zelle, Rintze M.
    Pronk, Jack T.
    van Maris, Antonius J. A.
    [J]. FEMS YEAST RESEARCH, 2009, 9 (08) : 1123 - 1136
  • [2] Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products
    Ali, Nasir
    Zhang, Quan
    Liu, Zi-Yong
    Li, Fu-Li
    Lu, Ming
    Fang, Xiang-Chen
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2020, 104 (02) : 455 - 473
  • [3] Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae
    Allen, Sandra A.
    Clark, William
    McCaffery, J. Michael
    Cai, Zhen
    Lanctot, Alison
    Slininger, Patricia J.
    Liu, Z. Lewis
    Gorsich, Steven W.
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2010, 3
  • [4] Evolutionary Engineering of Saccharomyces cerevisiae for Enhanced Tolerance to Hydrolysates of Lignocellulosic Biomass
    Almario, Maria P.
    Reyes, Luis H.
    Kao, Katy C.
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2013, 110 (10) : 2616 - 2623
  • [5] NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae
    Almeida, Joao R. M.
    Roder, Anja
    Modig, Tobias
    Laadan, Boaz
    Liden, Gunnar
    Gorwa-Grauslund, Marie-F.
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 78 (06) : 939 - 945
  • [6] Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
    Almeida, Jodo R. M.
    Modig, Tobias
    Petersson, Anneli
    Hahn-Hagerdal, Barbel
    Liden, Gunnar
    Gorwa-Grauslund, Marie F.
    [J]. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2007, 82 (04) : 340 - 349
  • [7] Tuning genetic control through promoter engineering
    Alper, H
    Fischer, C
    Nevoigt, E
    Stephanopoulos, G
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (36) : 12678 - 12683
  • [8] [Anonymous], 2021, GLOBAL LACTIC ACID M
  • [9] Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae
    Baek, Seung-Ho
    Kwon, Eunice Y.
    Kim, Yong Hwan
    Hahn, Ji-Sook
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2016, 100 (06) : 2737 - 2748
  • [10] The biomass distribution on Earth
    Bar-On, Yinon M.
    Phillips, Rob
    Milo, Ron
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (25) : 6506 - 6511