Branched and Dendritic Polymer Architectures: Functional Nanomaterials for Therapeutic Delivery

被引:133
作者
Cook, Alexander B. [1 ,4 ]
Perrier, Sebastien [1 ,2 ,3 ]
机构
[1] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Warwick Med Sch, Coventry CV4 7AL, W Midlands, England
[3] Monash Univ, Fac Pharm & Pharmaceut Sci, 381 Royal Parade, Parkville, Vic 3052, Australia
[4] Ist Italiano Tecnol, Lab Nanotechnol Precis Med, Via Morego, I-16163 Genoa, Italy
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
bio-nanotechnology; dendrimers; drug delivery; hierarchical structures; polymeric materials; THIOL-YNE CHEMISTRY; MOLECULAR-SIZE DISTRIBUTION; BLOOD-BRAIN-BARRIER; HYPERBRANCHED POLYMERS; DRUG-DELIVERY; CELLULAR UPTAKE; POLY(ETHYLENE GLYCOL); IN-VITRO; STAR POLYMERS; GENE DELIVERY;
D O I
10.1002/adfm.201901001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Barriers to therapeutic transport in biological systems can prevent accumulation of drugs at the intended site, thus limiting the therapeutic effect against various diseases. Advances in synthetic chemistry techniques have recently increased the accessibility of complex polymer architectures for drug delivery systems, including branched polymer architectures. This article first outlines drug delivery concepts, and then defines and illustrates all forms of branched polymers including highly branched polymers, hyperbranched polymers, dendrimers, and branched-linear hybrid polymers. Many new types of branched and dendritic polymers continue to be reported; however, there is often confusion about how to accurately describe these complex polymer architectures, particularly in the interdisciplinary field of nanomedicine where not all researchers have in-depth polymer chemistry backgrounds. In this context, the present review describes and compares different branched polymer architectures and their application in therapeutic delivery in a simple and easy-to-understand way, with the aim of appealing to a multidisciplinary audience.
引用
收藏
页数:24
相关论文
共 202 条
[1]   Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes [J].
Alvarez-Erviti, Lydia ;
Seow, Yiqi ;
Yin, HaiFang ;
Betts, Corinne ;
Lakhal, Samira ;
Wood, Matthew J. A. .
NATURE BIOTECHNOLOGY, 2011, 29 (04) :341-U179
[2]   Mechanisms and Barriers in Cancer Nanomedicine: Adressing Challenges, Looking for Solutions [J].
Anchordoquy, Thomas J. ;
Barenholz, Yechezkel ;
Boraschi, Diana ;
Chorny, Michael ;
Decuzzi, Paolo ;
Dobrovolskaia, Marina A. ;
Farhangrazi, Z. Shadi ;
Farrell, Dorothy ;
Gabizon, Alberto ;
Ghandehari, Hamidreza ;
Godin, Biana ;
La-Beck, Ninh M. ;
Ljubimova, Julia ;
Moghimi, S. Moein ;
Pagliaro, Len ;
Park, Ji-Ho ;
Peer, Dan ;
Ruoslahti, Erkki ;
Serkova, Natalie J. ;
Simberg, Dmitri .
ACS NANO, 2017, 11 (01) :12-18
[3]   Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications [J].
Appelhans, Dietmar ;
Klajnert-Maculewicz, Barbara ;
Janaszewska, Anna ;
Lazniewska, Joanna ;
Voit, Brigitte .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (12) :3968-3996
[4]   PEG-Based Hyperbranched Polymer Theranostics: Optimizing Chemistries for Improved Bioconjugation [J].
Ardana, Aditya ;
Whittaker, Andrew K. ;
Thurecht, Kristofer J. .
MACROMOLECULES, 2014, 47 (15) :5211-5219
[5]   Role of nanoparticle size, shape and surface chemistry in oral drug delivery [J].
Banerjee, Amrita ;
Qi, Jianping ;
Gogoi, Rohan ;
Wong, Jessica ;
Mitragotri, Samir .
JOURNAL OF CONTROLLED RELEASE, 2016, 238 :176-185
[6]   Development of branching in living radical copolymerization of vinyl and divinyl monomers [J].
Bannister, Iveta ;
Billingham, Norman C. ;
Armes, Steven P. ;
Rannard, Steven P. ;
Findlay, Paul .
MACROMOLECULES, 2006, 39 (22) :7483-7492
[7]   Synthesis of Polystyrene-Based Hyperbranched Polymers by Thiol-Yne Chemistry: A Detailed Investigation [J].
Barbey, Raphael ;
Perrier, Sebastien .
MACROMOLECULES, 2014, 47 (19) :6697-6705
[8]   A Facile Route to Functional Hyperbranched Polymers by Combining Reversible Addition-Fragmentation Chain Transfer Polymerization, Thiol-Yne Chemistry, and Postpolymerization Modification Strategies [J].
Barbey, Raphael ;
Perrier, Sebastien .
ACS MACRO LETTERS, 2013, 2 (05) :366-370
[9]   Poly(2-ethyl-2-oxazoline) as Alternative for the Stealth Polymer Poly(ethylene glycol): Comparison of in vitro Cytotoxicity and Hemocompatibility [J].
Bauer, Marius ;
Lautenschlaeger, Christian ;
Kempe, Kristian ;
Tauhardt, Lutz ;
Schubert, Ulrich S. ;
Fischer, Dagmar .
MACROMOLECULAR BIOSCIENCE, 2012, 12 (07) :986-998
[10]   Cellular uptake of nanoparticles: journey inside the cell [J].
Behzadi, Shahed ;
Serpooshan, Vahid ;
Tao, Wei ;
Hamaly, Majd A. ;
Alkawareek, Mahmoud Y. ;
Dreaden, Erik C. ;
Brown, Dennis ;
Alkilany, Alaaldin M. ;
Farokhzad, Omid C. ;
Mahmoudi, Morteza .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (14) :4218-4244