Semiclassical Hypoelliptic Estimates for Non-Selfadjoint Operators with Double Characteristics

被引:23
|
作者
Hitrik, Michael [1 ]
Pravda-Starov, Karel [2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London, England
基金
美国国家科学基金会;
关键词
Double characteristics; Eigenvalues; FBI-Bargmann transform; Hypoelliptic estimates; Non-selfadjoint operators; Pseudodifferential calculus; Resolvent estimates; Singular space; FOKKER-PLANCK EQUATION; PSEUDODIFFERENTIAL OPERATORS;
D O I
10.1080/03605301003717092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a class of non-selfadjoint semiclassical pseudodifferential operators with double characteristics, with a leading symbol with a non-negative real part, we study bounds for resolvents and estimates for low lying eigenvalues. Specifically, assuming that the quadratic approximations of the principal symbol of the operator along the double characteristics enjoy a partial ellipticity property along a suitable subspace of the phase space, namely their singular spaces, we establish semiclassical hypoelliptic a priori estimates with a loss of the full power of the semiclassical parameter giving a localization for the low lying spectral values of the operator.
引用
收藏
页码:988 / 1028
页数:41
相关论文
共 50 条