Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability

被引:700
作者
Chen, Yi [1 ]
Wang, Tianyi [1 ]
Tian, Huajun [1 ]
Su, Dawei [1 ]
Zhang, Qiang [2 ]
Wang, Guoxiu [1 ]
机构
[1] Univ Technol Sydney, Fac Sci, Sch Math & Phys Sci, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
[2] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
基金
澳大利亚研究理事会;
关键词
anodes; binders; cathodes; electrolytes; separators; GEL POLYMER ELECTROLYTE; LI-S BATTERY; METAL-ORGANIC FRAMEWORK; ATOMIC LAYER DEPOSITION; HIGH-ENERGY-DENSITY; EFFICIENT POLYSULFIDE MEDIATOR; CARBONATE-BASED ELECTROLYTE; COMPOSITE CATHODE MATERIALS; ENHANCED CYCLE PERFORMANCE; SELF-TEMPLATED FORMATION;
D O I
10.1002/adma.202003666
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-ion batteries, which have revolutionized portable electronics over the past three decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy density of current lithium-ion batteries is approaching its limit, developing new battery technologies beyond lithium-ion chemistry is significant for next-generation high energy storage. Lithium-sulfur (Li-S) batteries, which rely on the reversible redox reactions between lithium and sulfur, appears to be a promising energy storage system to take over from the conventional lithium-ion batteries for next-generation energy storage owing to their overwhelming energy density compared to the existing lithium-ion batteries today. Over the past 60 years, especially the past decade, significant academic and commercial progress has been made on Li-S batteries. From the concept of the sulfur cathode first proposed in the 1960s to the current commercial Li-S batteries used in unmanned aircraft, the story of Li-S batteries is full of breakthroughs and back tracing steps. Herein, the development and advancement of Li-S batteries in terms of sulfur-based composite cathode design, separator modification, binder improvement, electrolyte optimization, and lithium metal protection is summarized. An outlook on the future directions and prospects for Li-S batteries is also offered.
引用
收藏
页数:67
相关论文
共 546 条
[1]   Investigation of surface effects through the application of the functional binders in lithium sulfur batteries [J].
Ai, Guo ;
Dai, Yiling ;
Ye, Yifan ;
Mao, Wenfeng ;
Wang, Zhihui ;
Zhao, Hui ;
Chen, Yulin ;
Zhu, Junfa ;
Fu, Yanbao ;
Battaglia, Vincent ;
Guo, Jinghua ;
Srinivasan, Venkat ;
Liu, Gao .
NANO ENERGY, 2015, 16 :28-37
[2]  
[Anonymous], 2016, Adv. Energy Mater
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Design of electrolyte solutions for Li and Li-ion batteries: a review [J].
Aurbach, D ;
Talyosef, Y ;
Markovsky, B ;
Markevich, E ;
Zinigrad, E ;
Asraf, L ;
Gnanaraj, JS ;
Kim, HJ .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :247-254
[6]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[7]  
Bai SY, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.94, 10.1038/nenergy.2016.94]
[8]   Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries [J].
Bao, Weizhai ;
Liu, Lin ;
Wang, Chengyin ;
Choi, Sinho ;
Wang, Dan ;
Wang, Guoxiu .
ADVANCED ENERGY MATERIALS, 2018, 8 (13)
[9]   Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries [J].
Barchasz, Celine ;
Lepretre, Jean-Claude ;
Patoux, Sebastien ;
Alloin, Fannie .
ELECTROCHIMICA ACTA, 2013, 89 :737-743
[10]  
Barghamadi M., 2019, Lithium-Sulfur Batteries, P71, DOI DOI 10.1002/9781119297895.CH3