Novel Ru/La0.75Sr0.25Cr0.5Mn0.5O3-δ catalysts for propane reforming in IT-SOFCs

被引:17
作者
Barison, Simona [1 ]
Fabrizio, Monica [1 ]
Mortalo, Cecilia [1 ]
Antonucci, PierLuigi [2 ]
Modafferi, Vincenza [2 ]
Gerbasi, Rosalba [3 ]
机构
[1] CNR, IENI, I-35127 Padua, Italy
[2] Univ Reggio Calabria, Dept Mat & Mech, I-89100 Reggio Di Calabria, Italy
[3] CNR, ICIS, I-35127 Padua, Italy
关键词
IT-SOFC; LSCM; Ruthenium; Propane reforming; Sol-gel; Microwave; METHANE OXIDATION REACTION; OXIDE FUEL-CELLS; COMPOSITE ANODES; SULFUR TOLERANCE; STABILITY; CONVERSION; SR; NI;
D O I
10.1016/j.ssi.2010.01.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The La0.75Sr0.25Cr0.5Mn0.5O3-delta (LSCM) catalyst and the novel Ru/La0.75Sr0.25Cr0.5Mn0.5O3-delta composite were investigated as alternative anodes for the direct utilization of propane in anode-supported solid oxide fuel cells. In particular, their synthesis and performance in direct propane reforming were studied. The LSCM powders were prepared by a sol-gel method based on a modified Pechini procedure. Single-phase LSCM perovskite powders were obtained. SEM micrographs of the LSCM powders revealed particles in the 200-300 nm range with a homogeneous grain distribution. The deposition of 5 wt.% metallic ruthenium nanoparticles on the LSCM perovskite powders was carried out by a microwave-assisted procedure. TEM investigations of Ru/LSCM composites showed a homogeneous distribution of metallic ruthenium nanoparticles with a mean grain size of around 2-3 nm. The catalytic activity of these potential anode materials was investigated for the following propane reforming processes: steam reforming (SR), autothermal reforming (ATR) and partial oxidation (POX) at 600,700 and 800 degrees C. Very high propane conversion rates were observed under POX and ATR conditions at 700 and 800 degrees C for both the LSCM and Ru/LSCM compounds (>92 at 700 degrees C and >98% at 800 degrees C), whereas in the steam reforming environment, a satisfactory conversion was achieved only at 800 degrees C. The ruthenium presence was found to strongly improve the selectivity for H-2 and syngas production for all of the experiments performed, reaching an approximately 90% syngas yield. Finally, good chemical stability after the catalytic tests was demonstrated for the LSCM and Ru/LSCM anode materials. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:285 / 291
页数:7
相关论文
共 35 条
[21]  
Saraireh M, 2007, COMM COM INF SC, V3, P246
[22]   Catalytic properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature [J].
Sauvet, AL ;
Fouletier, J .
JOURNAL OF POWER SOURCES, 2001, 101 (02) :259-266
[23]   Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes [J].
Sfeir, J ;
Buffat, PA ;
Möckli, P ;
Xanthopoulos, N ;
Vasquez, R ;
Mathieu, HJ ;
Van herle, J ;
Thampi, KR .
JOURNAL OF CATALYSIS, 2001, 202 (02) :229-244
[24]   LaCrO3-based anodes:: stability considerations [J].
Sfeir, J .
JOURNAL OF POWER SOURCES, 2003, 118 (1-2) :276-285
[25]   Materials for IT-SOFC stacks 35 years R&D: the inevitability of gradualness? [J].
Steele, BCH .
SOLID STATE IONICS, 2000, 134 (1-2) :3-20
[26]   Materials for fuel-cell technologies [J].
Steele, BCH ;
Heinzel, A .
NATURE, 2001, 414 (6861) :345-352
[27]   Kinetic study of CO2 reforming of propane over Ru/Al2O3 [J].
Sutton, D ;
Moisan, JF ;
Ross, JRH .
CATALYSIS LETTERS, 2001, 75 (3-4) :175-181
[28]   An efficient solid oxide fuel cell based upon single-phase perovskites [J].
Tao, S ;
Irvine, JTS ;
Kilner, JA .
ADVANCED MATERIALS, 2005, 17 (14) :1734-+
[29]   Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs [J].
Tao, SW ;
Irvine, JTS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (02) :A252-A259
[30]   A redox-stable efficient anode for solid-oxide fuel cells [J].
Tao, SW ;
Irvine, JTS .
NATURE MATERIALS, 2003, 2 (05) :320-323