Novel Ru/La0.75Sr0.25Cr0.5Mn0.5O3-δ catalysts for propane reforming in IT-SOFCs

被引:17
作者
Barison, Simona [1 ]
Fabrizio, Monica [1 ]
Mortalo, Cecilia [1 ]
Antonucci, PierLuigi [2 ]
Modafferi, Vincenza [2 ]
Gerbasi, Rosalba [3 ]
机构
[1] CNR, IENI, I-35127 Padua, Italy
[2] Univ Reggio Calabria, Dept Mat & Mech, I-89100 Reggio Di Calabria, Italy
[3] CNR, ICIS, I-35127 Padua, Italy
关键词
IT-SOFC; LSCM; Ruthenium; Propane reforming; Sol-gel; Microwave; METHANE OXIDATION REACTION; OXIDE FUEL-CELLS; COMPOSITE ANODES; SULFUR TOLERANCE; STABILITY; CONVERSION; SR; NI;
D O I
10.1016/j.ssi.2010.01.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The La0.75Sr0.25Cr0.5Mn0.5O3-delta (LSCM) catalyst and the novel Ru/La0.75Sr0.25Cr0.5Mn0.5O3-delta composite were investigated as alternative anodes for the direct utilization of propane in anode-supported solid oxide fuel cells. In particular, their synthesis and performance in direct propane reforming were studied. The LSCM powders were prepared by a sol-gel method based on a modified Pechini procedure. Single-phase LSCM perovskite powders were obtained. SEM micrographs of the LSCM powders revealed particles in the 200-300 nm range with a homogeneous grain distribution. The deposition of 5 wt.% metallic ruthenium nanoparticles on the LSCM perovskite powders was carried out by a microwave-assisted procedure. TEM investigations of Ru/LSCM composites showed a homogeneous distribution of metallic ruthenium nanoparticles with a mean grain size of around 2-3 nm. The catalytic activity of these potential anode materials was investigated for the following propane reforming processes: steam reforming (SR), autothermal reforming (ATR) and partial oxidation (POX) at 600,700 and 800 degrees C. Very high propane conversion rates were observed under POX and ATR conditions at 700 and 800 degrees C for both the LSCM and Ru/LSCM compounds (>92 at 700 degrees C and >98% at 800 degrees C), whereas in the steam reforming environment, a satisfactory conversion was achieved only at 800 degrees C. The ruthenium presence was found to strongly improve the selectivity for H-2 and syngas production for all of the experiments performed, reaching an approximately 90% syngas yield. Finally, good chemical stability after the catalytic tests was demonstrated for the LSCM and Ru/LSCM anode materials. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:285 / 291
页数:7
相关论文
共 35 条
[1]   Catalytic conversion of propane to hydrogen in microstructured reactors [J].
Aartun, I ;
Gjervan, T ;
Venvik, H ;
Görke, O ;
Pfeifer, P ;
Fathi, M ;
Holmen, A ;
Schubert, K .
CHEMICAL ENGINEERING JOURNAL, 2004, 101 (1-3) :93-99
[2]   Preparation of barium cerate-based thin films using a modified Pechini process [J].
Agarwal, V ;
Liu, ML .
JOURNAL OF MATERIALS SCIENCE, 1997, 32 (03) :619-625
[3]   Catalytic autothermal reforming of methane and propane over supported metal catalysts [J].
Ayabe, S ;
Omoto, H ;
Utaka, T ;
Kikuchi, R ;
Sasaki, K ;
Teraoka, Y ;
Eguchi, K .
APPLIED CATALYSIS A-GENERAL, 2003, 241 (1-2) :261-269
[4]   Novel Au/La1-xSrxMnO3 and Au/La1-xSrxCrO3 composites:: Catalytic activity for propane partial oxidation and reforming [J].
Barison, S. ;
Battagliarin, M. ;
Daolio, S. ;
Fabrizio, M. ;
Miorin, E. ;
Antonucci, P. L. ;
Candamano, S. ;
Modafferi, V. ;
Bauer, E. M. ;
Bellitto, C. ;
Righini, G. .
SOLID STATE IONICS, 2007, 177 (39-40) :3473-3484
[5]   A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes [J].
Bastidas, DM ;
Tao, SW ;
Irvine, JTS .
JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (17) :1603-1605
[6]   Pre-reforming of propane for low-temperature SOFCs [J].
Chen, FZ ;
Zha, SW ;
Dong, J ;
Liu, ML .
SOLID STATE IONICS, 2004, 166 (3-4) :269-273
[7]   Sulfur tolerance and hydrocarbon stability of La0.75Sr0.25Cr0.5Mn0.5O3/Gd0.2Ce0.8O1.9 composite anode under anodic polarization [J].
Chen, X. J. ;
Liu, Q. L. ;
Chan, S. H. ;
Brandon, N. P. ;
Khor, Khiam Aik .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (11) :B1206-B1210
[8]   Preparation and characterization of La1-xSrxMnO3+δ (0≤x≤0.6) powder by sol-gel processing [J].
Gaudon, M ;
Laberty-Robert, C ;
Ansart, F ;
Stevens, P ;
Rousset, A .
SOLID STATE SCIENCES, 2002, 4 (01) :125-133
[9]   Ceramic materials for advanced solid oxide fuel cells [J].
Holtappels, P ;
Vogt, U ;
Graule, T .
ADVANCED ENGINEERING MATERIALS, 2005, 7 (05) :292-302
[10]   (La0.75Sr0.25)(Cr0.5Mn0.5)O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells [J].
Jiang, SP ;
Chen, XJ ;
Chan, SH ;
Kwok, JT ;
Khor, KA .
SOLID STATE IONICS, 2006, 177 (1-2) :149-157